如图,AB是⊙O的直径,∠BAC的平分线AQ交BC于点P,交⊙O于点Q.已知AC=6,∠AQC=30度.(1)求AB的长;(2)求点P到AB的距离;(3)求PQ

如图,AB是⊙O的直径,∠BAC的平分线AQ交BC于点P,交⊙O于点Q.已知AC=6,∠AQC=30度.(1)求AB的长;(2)求点P到AB的距离;(3)求PQ

题型:不详难度:来源:
如图,AB是⊙O的直径,∠BAC的平分线AQ交BC于点P,交⊙O于点Q.已知AC=6,∠AQC=30度.
(1)求AB的长;
(2)求点P到AB的距离;
(3)求PQ的长.
答案
(1)因为AB是⊙O的直径,所以∠ACB=90度.
又因为∠ABC=∠AQC=30°,AC=6,则AB=12.

(2)由(1)可知∠BAC=60°,AO=6,由于AQ是∠BAC的平分线,
所以∠CAQ=∠BAQ=30°,则有∠BAQ=∠ABC=30°,
所以△APB是等腰三角形.
连接PO,则PO就是点P到AB的距离.
在Rt△AOP中,PO=AO•tan30°=2


3

故所求点P到AB的距离为2


3


(3)因为∠BCQ=∠BAQ=30°,
∴∠AQC=∠BCQ,则PQ=CP,
由于AP是∠BAC的平分线,∠ACP=∠AOP=90°,
所以CP=PO=2


3
,那么PQ=2


3
举一反三
如图,A市东偏北60°方向有一旅游景点M,在A市东偏北30°的公路上向前行800米到C处,测得M位于C的北偏西15°,则景点M到公路AC的距离MN为______米(结果保留根号).
题型:不详难度:| 查看答案
某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的顶点A的仰角为30°,然后向建筑物AB前进20m到达点D处,又测得点A的仰角为60°,则建筑物AB的高度是______m.
题型:不详难度:| 查看答案
用科学记算器或数学用表求:
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A0′6′12′18′1′2′3′
65°2.1452.1542.1642.174235
如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(下面两小题的结果都精确到0.1米,参考数据:


3
≈1.732)
(1)若修建的斜坡BE的坡度为1:0.8,则平台DE的长为______米;
(2)斜坡前的池塘内有一座建筑物GH,小明在平台E处测得建筑物顶部H的仰角(即∠HEM)为30°,测得建筑物顶部H在池塘中倒影H′的俯角为45°(即∠H′EM),测得点B、C、A、G、H、H′在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,求建筑物GH的高和AG的长.
如图,在航线L的两侧分别有观测点A和B,点A到航线L的距离为2km,点B位于点A北偏东60°方向且与A相距5km处.现有一艘轮船正沿该航线自西向东航行,在C点观测到点A位于南偏东54°方向,航行10分钟后,在D点观测到点B位于北偏东70°方向.
(1)求观测点B到航线L的距离;
(2)求该轮船航线的速度(结果精确到0.1km/h,参考数据:


3
=1.73
,sin54°=0.81cos54°=0.59,tan54°=1.38,sin70°=0.94,cos70°=0.34,tan70°=2.75)