现在各地房产开发商,为了获取更大利益,缩短楼间距,以增加住宅楼栋数.我市某小区正在兴建的若干幢20层住宅楼,国家规定普通住宅层高宜为2.80米.如果楼间距过小,
题型:不详难度:来源:
现在各地房产开发商,为了获取更大利益,缩短楼间距,以增加住宅楼栋数.我市某小区正在兴建的若干幢20层住宅楼,国家规定普通住宅层高宜为2.80米.如果楼间距过小,将影响其他住户的采光(如图所示,窗户高1.3米). 太阳高度角 不影响采光 稍微影响 完全影响 (1)我市的太阳高度角(即正午太阳光线与水平面的夹角):夏至日为81.4度,冬至日为34.88度。 了不影响各住户的采光,两栋住宅楼的楼间距至少为多少米? (2)有关规定:平行布置住宅楼,其建筑间距应不小于南侧建筑高度的1.2倍;按照此规定,是否影响北侧住宅楼住户的全年的采光?若有影响,试求哪些楼层的住户受到影响?(本题参考值:sin81.4º="0.99," cos81.4º="0.15," tan81.4º=6.61;sin34.88º="0.57," cos34.88º="0.82," tan34.88º=0.70) |
答案
(1)78.6米;(2)北侧住宅楼1至3楼的住户的采光受影响,4楼及4楼以上住户不受影响. |
解析
试题分析:本题考查了将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.(1) 过点C作CE⊥AB,垂足为E,利用三角函数求出CE的宽度即是两楼间的间距.若求采光是否受影响.应求阳光照到墙上多高,决定几楼是否受影响. (2)在直角三角形ACE中,由正切函数可得AE的长,进一步得到CD的长,从而求解. 试题解析:(1) 如图所示: AC为太阳光线,太阳高度角选择冬至日的34.88度,即∠ACE=34.880,楼高AB为2.80×20=56米,窗台CD高为1米;过点C作CE垂直AB于点E,所以AE=AB-BE=AB-CD=55米; 在直角三角形ACE中,由tan∠ACE=,得:BD=CE= 即:两栋住宅楼的楼间距至少为78.6米。 (2) 利用(1)题中的图:此时∠ACE=34.880,楼高AB=2.80×20=56米,楼间距BD=CE =AB×1.2=67.2米; 在直角三角形ACE中,由tan∠ACE=,得:AE=CE×tan∠ACE=67.2×0.70=47.04m 则CD=BE=AB-AE=8.96m 而 8.96-2.8×3=0.56<1,故北侧住宅楼1至3楼的住户的采光受影响,4楼及4楼以上住户不受影响。 |
举一反三
某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼三楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为 米.
|
如图1是一张折叠椅子,图2是其侧面示意图,已知椅子折叠时长1.2米,椅子展开后最大张角∠CBD=37°,且BD=BC,AB:BG:GC=1:2:3,座面EF与地面平行,当展开角最大时,请解答下列问题: (1)求∠CGF的度数; (2)求座面EF与地面之间的距离。(可用计算器计算,结果保留两个有效数字,参考数据:sin71.5°≈0.948,cos71.5°≈0.317,tan71.5°≈2.989
|
如图所示,小明在自家楼顶上的点A处测量建在与小明家楼房同一水平线上邻居的电梯的高度,测得电梯楼顶部B处的仰角为45°,底部C处的俯角为26°,已知小明家楼房的高度AD=15米,求电梯楼的高度BC(结果精确到0.1米)(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)
|
钓鱼岛及其附属岛屿是中国固有领土,A、B、C分别是钓鱼岛、南小岛、黄尾屿上的点(如图),点C在点A的北偏东47°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为5.5km;同时,点B在点C的南偏西36°方向.若一艘中国渔船以30km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin54°≈0.81,cos54°≈0.59,tan47°≈1.07,tan36°≈0.73,tan11°≈0.19)
|
最新试题
热门考点