(11·贵港)如图所示,在△ABC中,∠C=90°,AD是BC边上的中线,BD=4,AD=2,则tan∠CAD的值是A.2B.C.D.

(11·贵港)如图所示,在△ABC中,∠C=90°,AD是BC边上的中线,BD=4,AD=2,则tan∠CAD的值是A.2B.C.D.

题型:不详难度:来源:
(11·贵港)如图所示,在△ABC中,∠C=90°,AD是BC边上的中线,BD=4,
AD=2,则tan∠CAD的值是
A.2B.C.D.

答案
A
解析
分析:根据中线的定义可得CD=BD,然后利用勾股定理求出AC的长,再根据正切等于对边:邻边列式求解即可.
解答:解:∵AD是BC边上的中线,BD=4,
∴CD=BD=4,
在Rt△ACD中,AC=
=
∴tan∠CAD==2.
故选A.
举一反三
已知Rt△ABC∽Rt△A′B′C′,∠C=∠C′=90°,且AB=2A′B′,则sinA
与sinA′的关系为                                             (    )
A.sinA=2sinA′B.sinA=sinA′ C.2sinA=sinA′ D.不确定

题型:不详难度:| 查看答案
(7分)如图,在一滑梯侧面示意图中,BD∥AF,BC⊥AF于点C,DE⊥AF于
点E.BC=1.8m,BD=0.5m,∠A=45º,∠F=29º.
(1)求滑道DF的长(精确到0.1m);
(2)求踏梯AB底端A与滑道DF底端F的距离AF(精确到0.1m).
(参考数据:sin29º≈0.48,cos29º≈0.87,tan29º≈0.55)
题型:不详难度:| 查看答案
.(6分)一种拉杆式旅行箱的示意图如图所示,箱体长AB=50cm,拉杆最大伸长距离BC=35cm(点A、B、C在同一直线上),点A到地面的距离AD=8cm,旅行箱与水平面AE成50°角,求拉杆伸长到最大时,把手处C到地面的距离(精确到1cm).(参考数据:sin50°= 0.77,cos50°= 0.64,tan50°= 1.19.)
题型:不详难度:| 查看答案
(8分)如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,
货船从港口P出发,沿北偏东45°方向匀速驶离港口P,4小时后货船在小岛的正
东方向.求货船的航行速度.(精确到0.1海里/时,参考数据:≈1.41,≈1.73)
题型:不详难度:| 查看答案
(6分)热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为50°热气球与高楼的水平距离为60 m,这栋高楼有多高?(结果精确到0. 1 m,参考数据:sin50°≈0.78,cos50°≈0.64 ,tan50°≈1.19 ,≈1.73 )

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.