如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:甲:(1)作OD的中垂线,交⊙O于B,C两点,(2)连接AB,AC,BC,△ABC即

如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:甲:(1)作OD的中垂线,交⊙O于B,C两点,(2)连接AB,AC,BC,△ABC即

题型:不详难度:来源:
如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:

甲:(1)作OD的中垂线,交⊙O于B,C两点,
(2)连接AB,AC,BC,△ABC即为所求的三角形.
乙:(1)以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
(2)连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断(  )
A.甲、乙均正确         B.甲、乙均错误
C.甲正确、乙错误       D.甲错误、乙正确
答案
A
解析
根据甲的思路,作出图形如图:

连接OB,
∵BC垂直平分OD,
∴E为OD的中点,且OD⊥BC,
∴OE=DE=OD,又OB=OD,
在Rt△OBE中,OE=OB,
∴∠OBE=30°,又∠OEB=90°,
∴∠BOE=60°,
∵OA=OB,∴∠OAB=∠OBA,
又∠BOE为△AOB的外角,
∴∠OAB=∠OBA=30°,
∴∠ABC=∠ABO+∠OBE=60°,
同理∠C=60°,
∴∠BAC=60°,
∴∠ABC=∠BAC=∠C,
∴△ABC为等边三角形,
故甲作法正确;
根据乙的思路,作图如图:

连接OB,BD,
∵OD=BD,OD=OB,
∴OD=BD=OB,
∴△BOD为等边三角形,
∴∠OBD=∠BOD=60°,
又BC垂直平分OD,∴OM=DM,
∴BM为∠OBD的平分线,
∴∠OBM=∠DBM=30°,又OA=OB,且∠BOD为△AOB的外角,
∴∠BAO=∠ABO=30°,
∴∠ABC=∠ABO+∠OBM=60°,
同理∠ACB=60°,
∴∠BAC=60°,
∴∠ABC=∠ACB=∠BAC,
∴△ABC为等边三角形,
故乙作法正确,
故选A.
举一反三
如图,点A、B、C是⊙O上三点,∠AOC=130°,则∠ABC等于(  )

A.50°         B.60°
C.65°         D.70°
题型:不详难度:| 查看答案
如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则⊙C的半径长为(  )

A.6           B.5
C.3           D.3
题型:不详难度:| 查看答案
已知⊙O的直径等于12cm,圆心O到直线l的距离为5cm,则直线l与⊙O的交点个数为    .
题型:不详难度:| 查看答案
把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为    厘米.

题型:不详难度:| 查看答案
扇形的半径是9cm,弧长是3πcm,则此扇形的圆心角为    度.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.