证明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确; 由△OBO′是等边三角形,可知结论②正确; 在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确; S四边形AOBO′=S△AOO′+S△OBO′="6+4" 3,故结论④错误; 如图②,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.利用旋转变换构造等边三角形与直角三角形,将S△AOC+S△AOB转化为S△COO″+S△AOO″,计算可得结论⑤正确. 解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3, 又∵OB=O′B,AB=BC, ∴△BO′A≌△BOC,又∵∠OBO′=60°, ∴△BO′A可以由△BOC绕点B逆时针旋转60°得到, 故结论①正确;
如图①,连接OO′, ∵OB=O′B,且∠OBO′=60°, ∴△OBO′是等边三角形, ∴OO′=OB=4. 故结论②正确; ∵△BO′A≌△BOC,∴O′A=5. 在△AOO′中,三边长为3,4,5,这是一组勾股数, ∴△AOO′是直角三角形,∠AOO′=90°, ∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°, 故结论③正确; S四边形AOBO′=S△AOO′+S△OBO′=, 故结论④错误;
如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点. 易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形, 则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″= , 故结论⑤正确. 综上所述,正确的结论为:①②③⑤. 故选A. |