如图,在△ABC中,∠ACB=90º,∠B=30º,AC=1,AC在直线l上.将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形
题型:不详难度:来源:
如图,在△ABC中,∠ACB=90º,∠B=30º,AC=1,AC在直线l上.将△ABC 绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②, 可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3 =3+;…,按此规律继续旋转,直到得到点P2012为止,则AP2012=【 】
A.2011+671 | B.2012+671 | C.2013+671 | D.2014+671 |
|
答案
B。 |
解析
分类归纳(图形的变化类),旋转的性质,锐角三角函数,特殊角的三角函数值。 【分析】寻找规律,发现将Rt△ABC绕点A,P1,P2,···顺时针旋转,每旋转一次, APi(i=1,2,3,···) 的长度依次增加2, ,1,且三次一循环,按此规律即可求解: ∵Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,∴AB=2,BC=。 根据旋转的性质,将Rt△ABC绕点A,P1,P2,···顺时针旋转,每旋转一次, APi(i=1,2,3,···) 的长度依次增加2, ,1,且三次一循环。 ∵2012÷3==670…2, ∴AP2012=670(3+ )+2+ ="2012+671" 。故选B。 |
举一反三
下列图形中,既是轴对称图形,又是中心对称图形的是【 】A.平行四边形 | B.等边三角形 | C.等腰梯形 | D.正方形 |
|
从图形的几何性质考虑,下列图形中有一个与其他三个不同,它是 ( ▲ ) |
下列生活中的现象: ①汽车刮雨器的运动 ②抽屉的拉开 ③ 荡秋千 ④投影片的文字经投影变换到屏幕 ⑤树叶从树上飘落到地上,等属于平移的现象有 ( ▲ )个。 A、 1 B、 2 C、3 D、4 |
聪明的你试试看吧! (1)分析图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分。
(2)在下列的图形上补一个小正方形,使它成为一个轴对称图形。 |
如图,在正方形的网格图(每小格边长均为1的正方形)中,完成下列各题:
⑴将⊿ABC向右平移4个单位得到⊿A1B1C1; ⑵画出⊿A1B1C1绕点C1逆时针旋转90º所得的⊿A2B2C1; ⑶把⊿ABC的每条边扩大到原来的2倍得到⊿A3B3C3;(顶点画在网格点上). |
最新试题
热门考点