(1)根据旋转规律,点P6落在y轴的负半轴,而点Pn到坐标原点的距离始终等于前一个点到原点距离的2倍,故其坐标为P6(0,-26),即P6(0,-64);
(2)由已知可得,△P0OP1∽△P1OP2∽△Pn-1OPn. 设P1(x1,y1),则y1=2sin45°=, ∴S△P0OP1=×1×=, 又∵=32, ∴=()2=1024, ∴S△P5OP6=1024×=512;
(3)由题意知,OP0旋转8次之后回到x轴正半轴,在这8次中,点Pn分别落在坐标象限的平分线上或x轴或y轴上,但各点绝对坐标的横、纵坐标均为非负数,因此,点Pn的坐标可分三类情况:令旋转次数为n, ①当n=8k或n=8k+4时(其中k为自然数),点Pn落在x轴上,此时,点Pn的绝对坐标为(2n,0); ②当n=8k+1或n=8k+3或n=8k+5或n=8k+7时(其中k为自然数),点Pn落在各象限的平分线上,此时,点Pn的绝对坐标为(×2n,×2n),即(2n-1,2n-1); ③当n=8k+2或n=8k+6时(其中k为自然数),点Pn落在y轴上, 此时,点Pn的绝对坐标为(0,2n). |