已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R,,满足f(a•b)=af(b)+bf(a),f(2)=2,an=f(2n)n(n∈N*),bn

已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R,,满足f(a•b)=af(b)+bf(a),f(2)=2,an=f(2n)n(n∈N*),bn

题型:填空题难度:简单来源:上海模拟
已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R,,满足f(a•b)=af(b)+bf(a),f(2)=2,an=
f(2n)
n
(n∈N*),bn=
f(2n)
2n
(n∈N*)

考查下列结论:
(1)f(0)=f(1);
(2)f(x)为偶函数;
(3)数列{an}为等比数列;
(4)
lim
n→∞
(1+
1
bn
)bn=e

其中正确的是______.
答案
对于(1),∵f(0)=f(0•0)=0,f(1)=f(1•1)=2f(1),∴f(1)=0,故(1)正确;
对于(2),∵f(1)=f[(-1)•(-1)]=-2f(-1),
∴f(-1)=0,f(-2)=f(-1×2)=-f(2)+2f(-1)=-2≠f(2),
故f(x)不是偶函数,故(2)错;
对于(3),f(2n)=f(2•2n-1)=2f(2n-1)+2n-1f(2)=2f(2n-1)+2n=…=n•2n
∴bn=n,,∴f(2n)=n×2n,∴an=2n
故数列{an}是等比数列,故(3)正确;
对于(4),bn=n,
lim
n→∞
(1+
1
bn
)
bn
=
lim
n→∞
(1+
1
n
)
n
=e
,故(4)正确.
举一反三
已知f(x)=





3+x
1+x2
,0≤x≤3
f(3),x>3.

(1)求函数f(x)的单调区间;
(2)若关于x的方程f(x)-a=0恰有一个实数解,求实数a的取值范围;
(3)已知数列{an}满足:0<an≤3,n∈N*,且a1+a2+a3+…a2009=
2009
3
,若不等式f(a1)+f(a2)+f(a3)+…+f(a2009)≤x-ln(x-p)在x∈(p,+∞)时恒成立,求实数p的最小值.
题型:解答题难度:一般| 查看答案
已知函数f(x)=|x-1|-|x+1|.如果f(f(a))=f(9)+1,则实数a等于(  )
A.-
1
4
B.-1C.1D.
3
2
题型:单选题难度:简单| 查看答案
已知函数f(x)在(-1,1)有意义,f(
1
2
)=-1且任意的x、y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
),若数列{xn}满足x1=
1
2
,xn+1=
2xn
1+
x2n
(n∈N*),求f(xn).
题型:解答题难度:一般| 查看答案
已知定义域在R上的单调函数,存在实数x0,使得对于任意的实数x1,x2总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(1)=1,且对于任意的正整数n,有an=
1
f(n)
,bn=f(
1
2n
)+1
(Ⅰ)若Sn=a1a2+a2a3+…+anan+1,求Sn
(Ⅱ)若Tn=b1b2+b2b3+…+bnbn+1,求Tn
题型:解答题难度:一般| 查看答案
已知函数f(x)=





x2+x,(x≥0)
-x2-x,(x<0)
 则不等式f(x)+2>0的解集是 .
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.