设函数f(x)=ax+1x+b(a,b为常数),且方程f(x)=32x有两个实根为x1=-1,x2=2,(1)求y=f(x)的解析式;(2)证明:曲线y=f(x

设函数f(x)=ax+1x+b(a,b为常数),且方程f(x)=32x有两个实根为x1=-1,x2=2,(1)求y=f(x)的解析式;(2)证明:曲线y=f(x

题型:解答题难度:一般来源:宣威市模拟
设函数f(x)=ax+
1
x+b
(a,b为常数),且方程f(x)=
3
2
x
有两个实根为x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心.
答案
(1)由





-a+
1
-1+b
=-
3
2
2a+
1
2+b
=3

解得





a=1
b=-1
f(x)=x+
1
x-1

(2)证明:已知函数y1=x,y2=
1
x
都是奇函数,
所以函数g(x)=x+
1
x
也是奇函数,其图象是以原点为中心的中心对称图形,
f(x)=x-1+
1
x-1
+1

可知,函数g(x)的图象沿x轴方向向右平移1个单位,
再沿y轴方向向上平移1个单位,即得到函数f(x)的图象,
故函数f(x)的图象是以点(1,1)为中心的中心对称图形.
举一反三
已知f(x)+2f(
1
x
)=2x+
3
x
(x≠0)
(1)求f(x)的解析式;
(2)解关于x的不等式:3xf(x)<(k+4)x2-(k+1)x+2(其中k<0).
题型:解答题难度:一般| 查看答案
设f(x)=x+
1
x
的图象为c1,c1关于点A(2,1)对称的图象为c2,c2对应的函数为g(x)
(1)求g(x)的解析表达式;
(2)解不等式logag(x)<loga
9
2
(a>0且≠1)
题型:解答题难度:一般| 查看答案
已知函数f(x)=
mx
x2+n
(m,n∈R)
在x=1处取到极值2
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)=ax-lnx.若对任意的x1∈[
1
2
,2]
,总存在唯一的x2∈[
1
e2
1
e
]
,使得g(x2)=f(x1),求实数a的取值范围.
题型:解答题难度:一般| 查看答案
函数y=(2x-2)2+(2-x+2)2,通过换元t=ϕ(x),变成二次函数y=t2-4t+m(m为常数),则ϕ(x)=(  )
A.2x+2-xB.2x-2-xC.2x-21-xD.2x+21-x
题型:单选题难度:简单| 查看答案
已知:函数f(x)=(mx+n)lnx的图象过点A(e,e)且在A处的切线斜率为2,g(x)=
1
3
x3+
1
2
ax2+6x+2

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)对任意的x∈(0,+∞)f(x)≤g′(x)恒成立,求实数a的取值范围;
(Ⅲ)求函数f(x)在[t,2t]上的最小值.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.