函数y=log 12(sinxcosx)的单调增区间是(  )A.(kπ-π4,kπ+π4)(k∈z)B.(kπ+π4,kπ+34π)(k∈z)C.(kπ,kπ

函数y=log 12(sinxcosx)的单调增区间是(  )A.(kπ-π4,kπ+π4)(k∈z)B.(kπ+π4,kπ+34π)(k∈z)C.(kπ,kπ

题型:单选题难度:一般来源:不详
函数y=log 
1
2
(sinxcosx)的单调增区间是(  )
A.(kπ-
π
4
,kπ+
π
4
)(k∈z)
B.(kπ+
π
4
,kπ+
3
4
π
)(k∈z)
C.(kπ,kπ+
π
4
)(k∈z)
D.(kπ+
π
4
,kπ+
π
2
)(k∈z)
答案
函数y=log 
1
2
(sinxcosx)=log 
1
2
1
2
sin2x),
函数的定义域为:(kπ,kπ+
π
2
)(k∈Z),
因为 2kπ+
π
2
<2x<2kπ+π,⇒kπ+
π
4
<x<kπ+
π
2

所以函数y=log 
1
2
(sinxcosx)的单调增区间是:(kπ+
π
4
,kπ+
π
2
)(k∈Z)
故选D.
举一反三
设函数f(x)=x•sin x且f(α)-f(β)>0,α,β∈[-
π
2
π
2
],则下列不等式必定成立的是(  )
A.α>βB.α<βC.α+β>0D.α2>β2
题型:单选题难度:一般| 查看答案
函数f(x)在R上可导,且f(x)=x2f′(2)-3x,则f(-1)与f(1)的大小关系是(  )
A.f(-1)=f(1)B.f(-1)>f(1)C.f(-1)<f(1)D.不确定
题型:单选题难度:一般| 查看答案
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=
1
3
x3-
1
2
x2+3x-
5
12
,则g(
1
2013
)+g(
2
2013
)+…+g(
2012
2013
)
=(  )
A.2011B.2012C.2013D.2014
题型:单选题难度:简单| 查看答案
函数y=


-3x2+2x+1
的单调递减区间为(  )
A.(-∞,
1
3
]
B.[
1
3
.+∞)
C.[-
1
3
1
3
]
D.[
1
3
,1]
题型:单选题难度:一般| 查看答案
已知f(x)=





log2x,x>0
f(x+1) ,x≤0
,则f(-1)=(  )
A.2B.1C.0D.4
题型:单选题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.