已知函数f(x)=aln(x+1)-x2,若在区间(0,1)内任取两个实数p,q,且p≠q,不等式f(p+1)-f(q+1)p-q>1恒成立,则实数a的取值范围

已知函数f(x)=aln(x+1)-x2,若在区间(0,1)内任取两个实数p,q,且p≠q,不等式f(p+1)-f(q+1)p-q>1恒成立,则实数a的取值范围

题型:填空题难度:一般来源:不详
已知函数f(x)=aln(x+1)-x2,若在区间(0,1)内任取两个实数p,q,且p≠q,不等式
f(p+1)-f(q+1)
p-q
>1
恒成立,则实数a的取值范围是______.
答案
由于
f(p+1)-f(q+1)
p-q
 表示点(p+1,f(p+1)) 与点(q+1,f(q+1))连线的斜率,
因实数p,q在区间(0,1)内,故p+1 和q+1在区间(1,2)内.
∵不等式
f(p+1)-f(q+1)
p-q
>1
恒成立,∴函数图象上在区间(1,2)内任意两点连线的斜率大于1,
故函数的导数大于1在(1,2)内恒成立.
由函数的定义域知,x>-1,∴f′(x)=
a
x+1
-2x>1 在(1,2)内恒成立.
即 a>2x2+3x+1在(1,2)内恒成立.
由于二次函数y=2x2+3x+1在[1,2]上是单调增函数,
故 x=2时,y=2x2+3x+1 在[1,2]上取最大值为15,∴a≥15,
故答案为[15,+∞).
举一反三
已知函数f(x)=x2+(2a-8)x,不等式f(x)≤5的解集是{x|-1≤x≤5}.
(1)求实数a的值;
(2)f(x)≥m2-4m-9对于x∈R恒成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
若f(x)是奇函数,且在(0,+∞)上是增函数,又f(-3)=0,则(x-1)f(x)<0的解是(  )
A.(-3,0)∪(1,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(1,3)
题型:单选题难度:简单| 查看答案
已知偶函数f(x)在区间[0,+∞)上单调增加,则满足f(2x-1)<f(
1
3
)的x取值范围是(  )
A.[
1
3
2
3
B.(
1
3
2
3
C.(
1
2
2
3
D.[
1
2
2
3
题型:单选题难度:简单| 查看答案
已知函数f(x)=log2(x2+1)(x≥0),g(x)=


x-a
 , ( a∈R )

(1)试求函数f(x)的反函数f-1(x);
(2)函数h(x)=f-1(x)+g(x),求h(x)的定义域,并判断函数h(x)的增减性;
(3)(理)若(2)中函数h(x),有h(x)≥2在定义域内恒成立,求a的范围.
(文)若(2)中函数h(x)的最小值为3,试求a的值.
题型:解答题难度:一般| 查看答案
函数f(x)为奇函数且f(3x+1)的周期为3,f(-1)=-1,则f(2008)等于(  )
A.0B.1C.一1D.2
题型:单选题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.