若二次函数满足f(x+1)-f(x)=2x且f(0)=1,(1)求f(x)的解析式;(2)若在R上,不等式f(x)>2x+m恒成立,求实数m的取值范围.
题型:解答题难度:一般来源:不详
若二次函数满足f(x+1)-f(x)=2x且f(0)=1, (1)求f(x)的解析式; (2)若在R上,不等式f(x)>2x+m恒成立,求实数m的取值范围. |
答案
(1)由题意,设其方程为y=ax2+bx+1代入f(x+1)-f(x)=2x恒成立,整理得2ax+a+b=2x恒成立,既得解得 故f(x)=x2-x+1 (2)在R上不等式f(x)>2x+m恒成立,即x2-3x+1-m>0恒成立,故△=9-4(1-m)<0,解得m<- |
举一反三
设a为实数,函数f(x)=x3+ax2+(a-2)x的导函数是f"(x)是偶函数,则曲线y=f(x)在原点处的切线方程为______. |
已知y=f(x)为奇函数,当x≥0时f(x)=x(1-x),则当x≤0时,f(x)=( )A.x(x-1) | B.-x(x+1) | C.x(x+1) | D.-x(x-1) |
|
对任意x∈R,给定区间[k-,k+](k∈z),设函数f(x)表示实数x与x的给定区间内 整数之差的绝对值. (1)当x∈[-,]时,求出f(x)的解析式;当x∈[k-,k+](k∈z)时,写出用绝对值符号表示的f(x)的解析式; (2)求f(),f(-)的值,判断函数f(x)(x∈R)的奇偶性,并证明你的结论; (3)当e-<a<1时,求方程f(x)-loga=0的实根.(要求说明理由e->) |
定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件: ①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数; ②f′(x)是偶函数;③f(x)在x=0处的切线与直线y=x+2垂直. (Ⅰ)求函数y=f(x)的解析式; (Ⅱ)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围. |
(一、二级达标校做) 已知函数f(x)=2x+(x∈R,λ∈R). (Ⅰ) 讨论函数的f(x)奇偶性,并说明理由; (Ⅱ)当λ=1时,讨论方程f(x)=μ(μ∈R)在x∈[-1,1]上实数解的个数情况,并说明理由. |
最新试题
热门考点