若二次函数满足f(x+1)-f(x)=2x且f(0)=1,(1)求f(x)的解析式;(2)若在R上,不等式f(x)>2x+m恒成立,求实数m的取值范围.

若二次函数满足f(x+1)-f(x)=2x且f(0)=1,(1)求f(x)的解析式;(2)若在R上,不等式f(x)>2x+m恒成立,求实数m的取值范围.

题型:解答题难度:一般来源:不详
若二次函数满足f(x+1)-f(x)=2x且f(0)=1,
(1)求f(x)的解析式;
(2)若在R上,不等式f(x)>2x+m恒成立,求实数m的取值范围.
答案
(1)由题意,设其方程为y=ax2+bx+1代入f(x+1)-f(x)=2x恒成立,整理得2ax+a+b=2x恒成立,既得





2a=2
a+b=0
解得





a=1
b=-1

故f(x)=x2-x+1
(2)在R上不等式f(x)>2x+m恒成立,即x2-3x+1-m>0恒成立,故△=9-4(1-m)<0,解得m<-
5
4
举一反三
设a为实数,函数f(x)=x3+ax2+(a-2)x的导函数是f"(x)是偶函数,则曲线y=f(x)在原点处的切线方程为______.
题型:填空题难度:一般| 查看答案
已知y=f(x)为奇函数,当x≥0时f(x)=x(1-x),则当x≤0时,f(x)=(  )
A.x(x-1)B.-x(x+1)C.x(x+1)D.-x(x-1)
题型:单选题难度:简单| 查看答案
对任意x∈R,给定区间[k-
1
2
,k+
1
2
](k∈z),设函数f(x)表示实数x与x的给定区间内
整数之差的绝对值.
(1)当x∈[-
1
2
1
2
]
时,求出f(x)的解析式;当x∈[k-
1
2
,k+
1
2
](k∈z)时,写出用绝对值符号表示的f(x)的解析式;
(2)求f(
4
3
),f(-
4
3
)
的值,判断函数f(x)(x∈R)的奇偶性,并证明你的结论;
(3)当e-
1
2
<a<1
时,求方程f(x)-loga


x
=0
的实根.(要求说明理由e-
1
2
1
2
题型:解答题难度:一般| 查看答案
定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数; ②f′(x)是偶函数;③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.
题型:解答题难度:一般| 查看答案
(一、二级达标校做)
已知函数f(x)=2x+
λ
2x
(x∈R,λ∈R)

(Ⅰ) 讨论函数的f(x)奇偶性,并说明理由;
(Ⅱ)当λ=1时,讨论方程f(x)=μ(μ∈R)在x∈[-1,1]上实数解的个数情况,并说明理由.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.