解:(Ⅰ)由题意知. , 同理,,,…, . 又因为成等差数列,所以. 故,即是公差为的等差数列. 所以,. 令,则,此时. ………4分 (Ⅱ)当时,. 数列分组如下:. 按分组规律,第组中有个奇数, 所以第1组到第组共有个奇数. 注意到前个奇数的和为, 所以前个奇数的和为. 即前组中所有数之和为,所以. 因为,所以,从而 . 所以 . . 故
. 所以 . ………………………………9分 (Ⅲ)由(Ⅱ)得,. 故不等式就是. 考虑函数. 当时,都有,即. 而, 注意到当时,单调递增,故有. 因此当时,成立,即成立. 所以,满足条件的所有正整数. …………………………14分 |