(1)在已知式中,当n=1时,=,∵a1>0,∴a1=1,当n≥2时,+++…+=,① +…+=,② ①-②得,=-=(Sn-Sn-1)(Sn+Sn-1), ∵an>0,∴=Sn+Sn-1=2Sn-an,③ ∵a1=1适合上式 当n≥2时,=2Sn-1-an-1,④ ③-④得-=2(Sn-Sn-1)-an+an-1=2an-an+an-1=an+an-1. ∵an+an-1>0,∴an-an-1=1,∴数列{an}是等差数列,首项为1,公差为1,可得an=n. (2)由(1)知:bn=3n+(-1)n-1λ·2n ∴bn+1-bn=[3n+1+(-1)nλ·2n+1]-[3n+(-1)n-1λ·2n]=2·3n-3λ(-1)n-1·2n>0 ∴(-1)n-1·λ<n-1,⑤ 当n=2k-1,k=1,2,3,…时,⑤式即为λ<2k-2,⑥ 依题意,⑥式对k=1,2,3,…都成立,∴λ<1, 当n=2k,k=1,2,3,…时,⑤式即为λ>-2k-1,⑦ 依题意,⑦式对k=1,2,3,…都成立, ∴λ>-,∴-<λ<1,又λ≠0,∴存在整数λ=-1,使得对任意n∈N*,都有bn+1>bn. |