已知数列{an}的前n项和为Sn,且对任意n∈N*有an+Sn=n.(1)设bn=an-1,求证:数列{bn}是等比数列;(2)设c1=a1且cn=an-an-

已知数列{an}的前n项和为Sn,且对任意n∈N*有an+Sn=n.(1)设bn=an-1,求证:数列{bn}是等比数列;(2)设c1=a1且cn=an-an-

题型:不详难度:来源:
已知数列{an}的前n项和为Sn,且对任意n∈N*有an+Sn=n.
(1)设bn=an-1,求证:数列{bn}是等比数列;
(2)设c1=a1且cn=an-an-1 (n≥2),求{cn}的通项公式.
答案
(1)证明见解析(2)cn= ()n
解析
(1)证明 由a1+S1=1及a1=S1得a1=.
又由an+Sn=n及an+1+Sn+1=n+1得
an+1-an+an+1=1,∴2an+1=an+1.
∴2(an+1-1)=an-1,即2bn+1=bn.
∴数列{bn}是以b1=a1-1=-为首项,
为公比的等比数列.                                            6分
(2)解 方法一 由(1)知2an+1=an+1.
∴2an=an-1+1 (n≥2),                                               8分
∴2an+1-2an=an-an-1,
∴2cn+1=cn (n≥2).
又c1=a1=,a2+a1+a2=2,∴a2=.
∴c2=-=,即c2=c1.
∴数列{cn}是首项为,公比为的等比数列.                        12分
∴cn=·()n-1=()n.                                       14分
方法二 由(1)bn=(-)·()n-1=-()n.
∴an=-()n+1.
∴cn=-()+1-
=-=
=(n≥2).                                      12分
又c1=a1=也适合上式,∴cn=.                             14分
举一反三
在等比数列{an}中,a1+a2+a3+a4+a5=8且++++=2,求a3.
题型:不详难度:| 查看答案
已知等比数列{an}中,a3=,S3=4,求a1.
题型:不详难度:| 查看答案
(1)在等比数列{an}中,a1+a2=324,a3+a4=36,求a5+a6的值;
(2)在等比数列{an}中,已知a3a4a5=8,求a2a3a4a5a6的值.
题型:不详难度:| 查看答案
为了治理“沙尘暴”,西部某地区政府经过多年努力,到2009年底,将当地沙漠绿化了40%,从2010年开始,每年将出现这种现象:原有沙漠面积的12%被绿化,即改造为绿洲(被绿化的部分叫绿洲),同时原有绿洲面积的8%又被侵蚀为沙漠,问至少经过几年的绿化,才能使该地区的绿洲面积超过50%?(可参考数据lg2=0.3,最后结果精确到整数).
题型:不详难度:| 查看答案
数列{an}的前n项和为Sn,且Sn=(an-1).
(1)求a1,a2;
(2)证明:数列{an}是等比数列;
(3)求an及Sn.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.