已知数列{an}的通项公式为an=-2n+11,其前n项的和为Sn(n∈N*),则当Sn取最大值时,n=______.

已知数列{an}的通项公式为an=-2n+11,其前n项的和为Sn(n∈N*),则当Sn取最大值时,n=______.

题型:不详难度:来源:
已知数列{an}的通项公式为an=-2n+11,其前n项的和为Sn(n∈N*),则当Sn取最大值时,n=______.
答案
∵an=-2n+11,
∴a1=-2×1+11=9,
d=an-an-1=(-2n+11)-[-2(n-1)+11]=-2,
∴数列{an}是首项为9,公差为-2的等差数列,
∴Sn=-n2+10n=-(n-5)2+25,
∴由二次函数可知:当n=5时,前n项和Sn取到最大值时25,
故答案为:5.
举一反三
已知数列{an}的通项公式an=n2cosnπ,Sn为它的前n项的和,则
s2010
2011
=(  )
A.1005B.1006C.2009D.2010
题型:不详难度:| 查看答案
已知数列{an}的前n项和Sn=2-an
(1)求数列{an}的通项公式;
(2)求数列{Sn}的前项和.
题型:不详难度:| 查看答案
已知数列{an}的各项均为正值,a1=1,对任意n∈N*,an+12-1=4an(an+1),bn=log2(an+1)都成立.
(1)求数列{an}、{bn}的通项公式;
(2)令cn=an•bn,求数列{cn}的前n项和Tn
(3)当k>7且k∈N*时,证明对任意n∈N*,都有
1
bn
+
1
bn+1
+
1
bn+2
+…+
1
bnk-1
3
2
成立.
题型:不详难度:| 查看答案
定义集合运算:A⊙B={Z|Z=xy,x∈A,y∈B},设集合A={-1,0,1},B={sinα,cosα},则集合A⊙B的所有元素之和为(  )
A.1B.0C.-1D.sinα+cosα
题型:不详难度:| 查看答案
已知等差数列{an}的公差d>0,其前n项和为Sn,若S3=12,且2a1,a2,1+a3成等比数列.
(I)求{an}的通项公式;(II)记bn=
1
anan+1
(n∈N*)
,求数列{bn}的前n项和Tn
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.