已知函数f(x)=log33x1-x,M(x1,y1),N(x2,y2)是f(x)图象上的两点,横坐标为12的点P满足2OP=OM+ON(O为坐标原点).(Ⅰ)

已知函数f(x)=log33x1-x,M(x1,y1),N(x2,y2)是f(x)图象上的两点,横坐标为12的点P满足2OP=OM+ON(O为坐标原点).(Ⅰ)

题型:闵行区二模难度:来源:
已知函数f(x)=log3


3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2


OP
=


OM
+


ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=





1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.
答案
(1)由已知可得,


OP
=
1
2
(


OM
+


ON
)

∴P是MN的中点,有x1+x2=1.
∴y1+y2=f(x1)+f(x2
=log3


3
x1
1-x1
+log3


3
x2
1-x2

=log3(


3
x1
1-x1


3
x2
1-x2
)

=log3
3x1x2
(1-x1)(1-x2)

=log3
3x1x2
1-(x1+x2)+x1x2

=log3
3x1x2
1-1+x1x2
=1

(2)由(Ⅰ)知当x1+x2=1时,y1+y2=f(x1)+f(x1)=1
Sn=f(
1
n
)+f(
2
n
)++f(
n-1
n
)

Sn=f(
n-1
n
)++f(
2
n
)+f(
1
n
)

相加得
2Sn=[f(
1
n
)+f(
n-1
n
)]+[(
2
n
)+f(
n-2
n
)]++[f(
n-1
n
)+f(
1
n
)]

=
1+1++1





(n-1)个1

=n-1
Sn=
n-1
2

(3)当n≥2时,
an=
1
4(Sn+1)(Sn+1+1)
=
1
n+1
2
n+2
2
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

又当n=1时,
a1=
1
6
=
1
2
-
1
3

an=
1
n+1
-
1
n+2

Tn=(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n+1
-
1
n+2
)
=
n
2(n+2)

由于Tn<m(Sn+1+1)对一切n∈N*都成立,
m>
Tn
Sn+1+1
=
n
(n+2)2
=
1
n+
4
n
+4

n+
4
n
≥4
,当且仅当n=2时,取“=”,
1
n+
4
n
+4
1
4+4
=
1
8

因此m>
1
8

综上可知,m的取值范围是(
1
8
,+∞)
举一反三
1
22-1
+
1
32-1
+
1
42-1
+…+
1
(n+1)2-1
的值为(  )
A.
n+1
2(n+2)
B.
3
4
-
n+1
2(n+2)
C.
3
4
-
1
2
(
1
n+1
+
1
n+2
)
D.
3
2
-
1
n+1
-
1
n+2
题型:不详难度:| 查看答案
在直角坐标平面XOY上的一列点A1(1,a1),A2(2,a2),A3(3,a3),…An(n,an),…简记为{An},若由bn=


AnAn+1


j
构成的数列{bn}满足bn+1>bn,(n=1,2,…,n∈N) (其中


j
是与y轴正方向相同的单位向量),则称{An}为“和谐点列”.
(1)试判断:A1(1,1),A2(2,
1
2
)
A3(3,
1
22
)
An(n,
1
2n-1
)
…是否为“和谐点列”?并说明理由.
(2)若{An}为“和谐点列”,正整数m,n,p,q满足:≤m<n<p<q1,且m+q=n+p.求证:aq+am>an+ap
题型:不详难度:| 查看答案
数列1,(1+2),(1+2+22),…,(1+2+22+…+2n-1),…的前n项和Sn>1020,那么n的最小值是(  )
A.7B.8C.9D.10
题型:不详难度:| 查看答案
在数列{an}中,a1=1、a2=
1
4
,且an+1=
(n-1)an
n-an
(n≥2)

(Ⅰ) 求a3、a4,猜想an的表达式,并加以证明;
(Ⅱ) 设bn=


anan+1


an
+


an+1
,求证:对任意的自然数n∈N*,都有b1+b2+…+bn


n
3
题型:汕头二模难度:| 查看答案
已知数列{an}满足:a1=2,且
an
an+1-an
=n
;又数列{bn}满足:bn=2n-1+1.若数列{an}和{bn}的前n和分别为Sn和Tn,试比较Sn与Tn的大小.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.