已知甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地,东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲
题型:不详难度:来源:
已知甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地,东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨.要使总运费最少,煤矿应怎样编制调运方案? |
答案
设甲煤矿向东车站运x万吨煤,乙煤矿向东车站运y万吨煤,那么总运费z=x+1.5(200-x)+0.8y+1.6(300-y)(万元), 即z=780-0.5x-0.8y. x、y应满足
作出上面的不等式组所表示的平面区域如图所示.设直线x+y=280与y轴的交点为M,则M(0,280),把直线l:0.5x+0.8y=0向上平移至经过点M时,z的值最小. ∵点M的坐标为(0,280),∴甲煤矿生产的煤全部运往西车站,乙煤矿向东车站运280万吨、向西车站运20万吨时,总运费最少. |
解析
略 |
举一反三
点A在曲线C:+=1上,点M(x,y)在平面区域上,则AM的最小值是 . |
点P(x,y)在直线4x+3y=0上,且满足-14≤x-y≤7,则点P到坐标原点距离的取值范围是( )A.[0,5] | B.[0,10] | C.[5,10] | D.[5,15] |
|
设x,y满足约束条件,则目标函数z=3x-y的最大值为( ) |
不等式组表示的平面区域是( ) |
最新试题
热门考点