分析:已知2a+3b=6,求 + 的最小值,可以作出不等式的平面区域,先用乘积进而用基本不等式解答. 解答:解:不等式表示的平面区域如图所示阴影部分, 当直线ax+by=z(a>0,b>0) 过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时, 目标函数z=ax+by(a>0,b>0)取得最大12, 即4a+6b=12,即2a+3b=6,而 + =(+ )=+(+)≥+2=, 故选B. 点评:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值. |