试题分析:解法一:(Ⅰ)依题意,得 由得 (Ⅱ)由(Ⅰ)得 故 令,则或 ①当时, 当变化时,与的变化情况如下表: 由此得,函数的单调增区间为和,单调减区间为 ②由时,,此时,恒成立,且仅在处,故函数的单调区间为R ③当时,,同理可得函数的单调增区间为和,单调减区间为 综上: 当时,函数的单调增区间为和,单调减区间为; 当时,函数的单调增区间为R; 当时,函数的单调增区间为和,单调减区间为 (Ⅲ)当时,得 由,得 由(Ⅱ)得的单调增区间为和,单调减区间为 所以函数在处取得极值。 故 所以直线的方程为 由得 令 易得,而的图像在内是一条连续不断的曲线, 故在内存在零点,这表明线段与曲线有异于的公共点 解法二: (Ⅲ)当时,得,由,得 由(Ⅱ)得的单调增区间为和,单调减区间为,所以函数在处取得极值, 故 所以直线的方程为 由得 解得
所以线段与曲线有异于的公共点。 点评:本题是在知识的交汇点处命题,将函数、导数、不等式、方程的知识融合在一起进行考查,重点考查了利用导数研究函数的极值与最值等知识.导数题目是高考的必考题,且常考常新,但是无论如何少不了对基础知识的考查,因此备考中要强化基础题的训练. |