已知函数满足f(0)=0,f′(1)=0,且f(x)在R上单调递增.(1)求f(x)的解析式;(2)若g(x)=f′(x)﹣m·x在区间[m,m+2]上的最小值

已知函数满足f(0)=0,f′(1)=0,且f(x)在R上单调递增.(1)求f(x)的解析式;(2)若g(x)=f′(x)﹣m·x在区间[m,m+2]上的最小值

题型:四川省期中题难度:来源:
已知函数满足f(0)=0,f′(1)=0,且
f(x)在R上单调递增.
(1)求f(x)的解析式;
(2)若g(x)=f′(x)﹣m·x在区间[m,m+2]上的最小值为﹣5,求实数m的值.
答案
解:(1)∵数 满足f(0)=0,
∴d=0, ∴ 
∵f′(1)=0, ∴a﹣ =0,
∵f(x)在R上单调递增,
 ,x∈R,
∴ ,x∈R.
故: ,
∴a= 
于是c= ,故f(x)= 
(2) 
故g(x)=f′(x)﹣mx = ,
对称轴为x=2m+1.
下面分情况讨论对称轴与区间的位置关系:
①   ,  ,
∴m=﹣3,(m= 舍去);
②当 时,  , ∴m∈
③当 时,  , ∴m=﹣1+2 
综上可得,满足题意的m有m=﹣3或m=﹣1+2 
举一反三
已知函数f(x)=x3﹣ax2+bx+c的图象为曲线C.
(1)若曲线C上存在点P,使曲线C在P点处的切线与x轴平行,求a,b的关系;
(2)若函数f(x)可以在x=﹣1和x=3时取得极值,求此时a,b的值;
(3)在满足(2)的条件下,f(x)<2c在x∈[﹣2,6]恒成立,求c的取值范围.
题型:新疆维吾尔自治区期末题难度:| 查看答案
已知函数f(x)=lnx﹣ax(a∈R).
(1)当a=2时,求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在[1,2]上最小值.
题型:江苏省期末题难度:| 查看答案
已知函数
(1)求函数的单调区间;
(2)若不等式f(x)≥g(x)在区间(0,+∞)上恒成立,求实数k的取值范围.
题型:山东省期末题难度:| 查看答案
已知函数f(x)=lnx﹣2kx,(k常数)
(1)求函数f(x)的单调区间;
(2)若f(x)<x3+lnx恒成立,求k的取值范围.
题型:山东省期末题难度:| 查看答案
某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站.记P到三个村庄的距离之和为y.
(1)设∠PBO=α,把y表示成α的函数关系式;
(2)变电站建于何处时,它到三个小区的距离之和最小?
题型:湖南省月考题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.