已知函数f(x)=x2﹣alnx在(1,2]是增函数,在(0,1)为减函数.(1)求f(x)、g(x)的表达式;(2)求证:当x>0时,方程f(x)=g(x)+

已知函数f(x)=x2﹣alnx在(1,2]是增函数,在(0,1)为减函数.(1)求f(x)、g(x)的表达式;(2)求证:当x>0时,方程f(x)=g(x)+

题型:湖南省月考题难度:来源:
已知函数f(x)=x2﹣alnx在(1,2]是增函数,在(0,1)为减函数.
(1)求f(x)、g(x)的表达式;
(2)求证:当x>0时,方程f(x)=g(x)+2有唯一解;
(3)当b>﹣1时,若在x∈(0,1]内恒成立,求b的取值范围.
答案
解:(1)
依题意f"(x)≥0,x∈(1,2]恒成立,
即a≤2x2x∈(1,2]恒成立.
∴a≤ 2①
,依题意恒成立g"(x)≤0,x∈(0,1),
 ,x∈(0,1)恒成立.
∴a≥2. .②
由①②得a=2.

(2)由f(x)=g(x)+2知,
方程

=
令h"(x)=0,并由x>0,得x=1.
列表分析:
x(0,1)1(1,+∞)h"(x)﹣0+h(x)递减0递增知h(x)在x=1处有一个最小值0,
∴当x>0且x≠1时,h(x)>0,
∴h(x)=0在(0,+∞)上只有一个解.
即当x>0时,方程f(x)=g(x)+2有唯一解.      
(3)解法一:∵在x∈(0,1]恒成立,
∴x2﹣2lnx在x∈(0,1]内恒成立,
在x∈(0,1]内恒成立…③
(x∈(0,1]),

∴x∈(0,1]时,m"(x)<0,
∴m(x)在(0,1]是减函数,
∴[m(x)]min=m(1)=2
由③知2b≤[m(x)]min=2,
∴b≤1
又b>﹣1,
所以:﹣1<b≤1为所求范围.
解法二:设
则x∈(0,1]时,
=
∴φ(x)在(0,1]为减函数,
∴φ(x)min=φ(1)=1﹣2b+1≥0,
∴b≤1
又b>﹣1,
所以:﹣1<b≤1为所求范围 .
举一反三
已知在函数f(x)=mx3﹣x的图象上以N(1,n)为切点的切线的倾斜角为
(1)求m、n的值;
(2)是否存在最小的正整数k,使得不等式f(x)≤k﹣1995对于x∈[﹣1,3]恒成立?如果存在,请求出最小的正整数k;如果不存在,请说明理由.
题型:湖南省月考题难度:| 查看答案
已知函数f(x)=,g(x)=alnx,a∈R.
(1)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
(2)设函数h(x)=f(x)﹣g(x),当h(x)存在最小值时,求其最小值φ(a)的解析式;
(3)对(2)中的φ(a),证明:当a∈(0,+∞)时,φ(a)≤1.
题型:湖南省月考题难度:| 查看答案
函数上的最大值是(    )
题型:江西省月考题难度:| 查看答案
如图是一个组合体.它下部的形状是高为10m的圆柱,上部的形状是母线长为30m的圆锥.试问当组合体的顶点O到底面中心的距离为多少时,组合体的体积最大?最大体积是多少?
题型:江西省月考题难度:| 查看答案
已知f(x)=2x3﹣6x2+a,(a为常数)在[﹣2,2]上有最小值3,那么f(x)在[﹣2,2]上的最大值为(     )
题型:辽宁省月考题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.