球内接正方体的八个顶点中,有四个顶点恰好是正四面体的顶点,则这个正方体的表面积与正四面体的表面积之比是 A.B.C.D.2:

球内接正方体的八个顶点中,有四个顶点恰好是正四面体的顶点,则这个正方体的表面积与正四面体的表面积之比是 A.B.C.D.2:

题型:不详难度:来源:
球内接正方体的八个顶点中,有四个顶点恰好是正四面体的顶点,则这个正方体的表面积与正四面体的表面积之比是
A.B.C.D.2:

答案

解析

举一反三
正四棱锥P-ABCD的五个顶点在同一个球面上,若其底面边长为4,侧棱长为,则此球的表面积为(   )
A.B.C.D.

题型:不详难度:| 查看答案
若一个球的体积为,则它的表面积为         
题型:不详难度:| 查看答案
棱长为2的正四面体的四个顶点都在同一个球面上,
若过该球球心的一个截面如图1,则图中三角形(正
四面体的截面)的面积是                   
题型:不详难度:| 查看答案
用一些棱长为1cm的小正方体码放成一个几何体,图1为其俯视图,图2为其主视图,则这个几何体的体积最大是        cm3
题型:不详难度:| 查看答案
(本题满分13分)
如图,在六面体中,平面∥平面
⊥平面,,
.且,
(1)求证: ∥平面
(2)求二面角的余弦值;
(3) 求五面体的体积.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.