如图,正方体ABCD—A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心.(1)求直线EF与平面ABCD所成角的正切值;(2)求异面直线A1C与EF

如图,正方体ABCD—A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心.(1)求直线EF与平面ABCD所成角的正切值;(2)求异面直线A1C与EF

题型:不详难度:来源:
如图,正方体ABCD—A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心.

(1)求直线EF与平面ABCD所成角的正切值;
(2)求异面直线A1C与EF所成角的余弦值.
答案
(1) (2)
解析

试题分析:解法一:(1)取BC中点H,连结FH,EH,设正方体棱长为2.
∵F为BCC1B1中心,E为AB中点.
∴FH⊥平面ABCD,FH=1,EH=
∴∠FEH为直线EF与平面ABCD所成角,且FH⊥EH.
∴tan∠FEH===.……6分
(2)取A1C中点O,连接OF,OA,则OF∥AE,且OF=AE.
∴四边形AEFO为平行四边形.∴AO∥EF.
∴∠AOA1为异面直线A1C与EF所成角.
∵A1A=2,AO=A1O=
∴△AOA1中,由余弦定理得cos∠A1OA=.……12分
解法二:设正方体棱长为2,以B为原点,BC为x轴,BA为y轴,BB1为z轴,建立空间直角坐标系.则B(0,0,0),B1(0,0,2),E(0,1,0),F(1,0,1),
C(2,0,0),A1(0,2,2).
(1)=(1,-1,1),=(0,0,2),且为平面ABCD的法向量.
∴cos<>=
设直线EF与平面ABCD所成角大小为θ.
∴sinθ=,从而tanθ=.……6分
(2)∵=(2,-2,-2).∴cos<>=
∴异面直线A1C与EF所成角的余弦值为.……12分
点评:解决的关键是根据异面直线所成角的定义, 以及线面角的概念,结合向量法来得到,属于基础题。
举一反三
边长为a的菱形ABCD中锐角A=,现沿对角线BD折成60°的二面角,翻折后=a,则锐角A是(     )
A.B.C.D.

题型:不详难度:| 查看答案
在空间四边形ABCD中,已知AD=1,BC,且ADBC,对角线BDAC ACBD所成的角是(   )
A.B.C.D.

题型:不详难度:| 查看答案
如右图已知每条棱长都为3的四棱柱ABCD-ABCD中,底面是菱形,BAD=60°,D B⊥平面ABCD,长为2的线段MN的一个端点M在DD上运动,另一个端点N在底面ABCD上运动,则MN中点P的轨迹与此四棱柱的面所围成的几何体的体积为 _____________
题型:不详难度:| 查看答案
如图,在长方体中,在棱上.

(1)求异面直线所成的角;
(2)若二面角的大小为,求点到面的距离.
题型:不详难度:| 查看答案
如图,在四棱锥中,侧棱底面,底面为矩形,的上一点,且为PC的中点.

(Ⅰ)求证:平面AEC;
(Ⅱ)求二面角的余弦值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.