已知正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成的角的余弦值为[     ]A. B. C. D.

已知正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成的角的余弦值为[     ]A. B. C. D.

题型:高考真题难度:来源:
已知正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成的角的余弦值为

[     ]

A.
B.
C.
D.
答案
C
举一反三
如图,在正四棱柱ABCD-A1B1C1D1中,AB=1,BB1=+1,E为BB1上使B1E=1的点。平面AEC1交DD1于F,交A1D1的延长线于G,求:
(Ⅰ)异面直线AD与C1G所成的角的大小;
(Ⅱ)二面角A-C1G-A1的正切值。

题型:重庆市高考真题难度:| 查看答案
已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E为AA1的中点,则异面直线BE与CD1所成角的余弦值为(    )。

题型:0113 期中题难度:| 查看答案
在棱长为a的正方体ABCD-A1B1C1D1中,E、F分别是BC、A1D1的中点,
(1)求异面直线BC、DF所成的角的正切值;
(2)若在正方体内放置一个铁球,求可放置的最大球的体积;
(3)求证:四边形B1EDF是菱形。

题型:0118 期末题难度:| 查看答案
在正方体ABCD-A1B1C1D1中,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为

[     ]

A.     
B.     
C.     
D.
题型:0125 期末题难度:| 查看答案
如图,P为平面ABCD外一点,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,PA⊥面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点,
(1)求证:PB⊥DM;
(2)求异面直线PB与CD所成角。

题型:0125 期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.