解:(Ⅰ)取CD中点O,连OB,OM, 则OB=OM=,OB⊥CD,MO⊥CD, 又平面MCD⊥平面BCD, 则MO⊥平面BCD,所以MO∥AB, MO∥平面ABC,M,O到平面ABC的距离相等. 作OH⊥BC于H,连MH,则MH⊥BC, 求得,, 设点A到平面MBC的距离为d, 由得, 即,解得。 (Ⅱ)延长AM、BO相交于E,连CE、DE, CE是平面ACM与平面BCD的交线, 由(Ⅰ)知,O是BE的中点,则四边形BCED是菱形, 作BF⊥EC于F,连AF,则AF⊥EC, ∠AFB就是二面角A-EC-B的平面角,设为θ, 因为∠BCE=120°,所以∠BCF=60°, ,, 则所求二面角的正弦值为。 | |