如图,在长方体ABCD-A1B1C1D1中,AB=2BC=2BB1,沿平面C1BD把这个长方体截成两个几何体:(Ⅰ)设几何体(1)、几何体(2)的体积分为是V1

如图,在长方体ABCD-A1B1C1D1中,AB=2BC=2BB1,沿平面C1BD把这个长方体截成两个几何体:(Ⅰ)设几何体(1)、几何体(2)的体积分为是V1

题型:不详难度:来源:
如图,在长方体ABCD-A1B1C1D1中,AB=2BC=2BB1,沿平面C1BD把这个长方体截成两个几何体:
(Ⅰ)设几何体(1)、几何体(2)的体积分为是V1、V2,求V1与V2的比值;
(Ⅱ)在几何体(2)中,求二面角P-QR-C的正切值.
答案
( I)设BC=a,则AB=2a,BB1=a,
所以VABCD-A1B1C1D1=2a×a×a=2a3---------(2分)
因为V2=
1
3
S△CQR×PC=
1
3
×
1
2
×2a×a×a=
1
3
a3
--------------------------(4分)V1=VABCD-A1B1C1D1-V2=2a3-
1
3
a3=
5
3
a3
----------------------(5分)
所以
V1
V2
=
5
3
a3
1
3
a3
=5
------------(6分)
(II)由点C作CH⊥QR于点H,连结PH,
因为PC⊥面CQR,QR⊂面CQR,
所以PC⊥QR.
因为PC∩CH=C,
所以QR⊥面PCH,
又因为PH⊂面PCH,
所以QR⊥PH,
所以∠PHC是二面角P-QR-C的平面角--------------------(9分)
CH•QR=CQ•CR,CH×


5
a=a×2a,CH=
2a


5

所以tan∠PHC=
a
2a


5
=


5
2
----------------------------------------------(12分)
举一反三
如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=
1
2
CD,M是线段AE上的动点.
(Ⅰ)试确定点M的位置,使AC平面DMF,并说明理由;
(Ⅱ)在(Ⅰ)的条件下,求平面DMF与平面ABCD所成锐二面角的余弦值.
题型:不详难度:| 查看答案
四棱锥P-ABCD底面是平行四边形,面PAB⊥面ABCD,PA=PB=AB=
1
2
AD,∠BAD=60°,E,F分别为AD,PC的中点.
(1)求证:EF面PAB
(2)求证:EF⊥面PBD
(3)求二面角D-PA-B的余弦值.
题型:不详难度:| 查看答案
如图四棱柱ABCD-A′B′C′D′的底面是正方形,O是底面的中心,A′O=1,AB=AA′=A′D=A′B=


2

(1)证明:平面A′BD平面B′CD′;
(2)求二面角A-BC-B′的余弦值.
题型:不详难度:| 查看答案
如图,矩形ABCD中,AB=a,AD=b,过点D作DE⊥AC于E,交直线AB于F.现将△ACD沿对角线AC折起到△PAC的位置,使二面角P-AC-B的大小为60°.过P作PH⊥EF于H.
(I)求证:PH⊥平面ABC;
(Ⅱ)若a=


2
b
,求直线DP与平面PBC所成角的大小;
(Ⅲ)若a+b=2,求四面体P-ABC体积的最大值.
题型:不详难度:| 查看答案
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中点.
(I)求证:A1B平面AEC1
(II)若棱AA1上存在一点M,满足B1M⊥C1E,求AM的长;
(Ⅲ)求平面AEC1与平面ABB1A1所成锐二面角的余弦值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.