如图四棱柱ABCD-A′B′C′D′的底面是正方形,O是底面的中心,A′O=1,AB=AA′=A′D=A′B=2.(1)证明:平面A′BD∥平面B′CD′;(2

如图四棱柱ABCD-A′B′C′D′的底面是正方形,O是底面的中心,A′O=1,AB=AA′=A′D=A′B=2.(1)证明:平面A′BD∥平面B′CD′;(2

题型:不详难度:来源:
如图四棱柱ABCD-A′B′C′D′的底面是正方形,O是底面的中心,A′O=1,AB=AA′=A′D=A′B=


2

(1)证明:平面A′BD平面B′CD′;
(2)求二面角A-BC-B′的余弦值.
答案
(1)证明:在四棱柱中,
∵BCA′D′,且BC=A′D′,
∴A′BCD′是平行四边形,
∴A′BCD′,
又∵A′B不包含于平面B′CD′,CD′⊂B′CD′,
∴A′B面B′CD′,
又A′B⊂面A′BD,A′D⊂面A′BD,且A′B∩A′D=A′,
∴平面A′BD平面B′CD′.
(2)∵平面ADD′A′平面BCC′B′,
∴二面角A-BC-B′与二面角A′-AD-B互补,
AQ=1,AB=AA=AD=


2

AQ2+OA2=AA"2,A′O2+OB2=A′B2
∴A′O⊥OA,A′O⊥OB,
∴A′O⊥平面ABCD,
∴过O作OM⊥AD于M,连结A′M,
∴A′M⊥AD,∠A′MO为A′-AD-B的平面角,
cos∠A′MO=
OM
AM
=


3
3

∴二面角A-BC-B′的余弦值为-


3
3
举一反三
如图,矩形ABCD中,AB=a,AD=b,过点D作DE⊥AC于E,交直线AB于F.现将△ACD沿对角线AC折起到△PAC的位置,使二面角P-AC-B的大小为60°.过P作PH⊥EF于H.
(I)求证:PH⊥平面ABC;
(Ⅱ)若a=


2
b
,求直线DP与平面PBC所成角的大小;
(Ⅲ)若a+b=2,求四面体P-ABC体积的最大值.
题型:不详难度:| 查看答案
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中点.
(I)求证:A1B平面AEC1
(II)若棱AA1上存在一点M,满足B1M⊥C1E,求AM的长;
(Ⅲ)求平面AEC1与平面ABB1A1所成锐二面角的余弦值.
题型:不详难度:| 查看答案
如图,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF-90°,BECF,CE⊥EF,AD=


3
,EF=2.
(1)求异面直线AD与EF所成的角;
(2)当AB的长为何值时,二面角A-EF-C的大小为45°?
题型:不详难度:| 查看答案
如图,边长为2的正方形ABCD中,点E、F分别是边AB、BC上的点,将△AED、△DCF分别沿DE、DF折起,使A、C两点重合于点A′.
(1)△A′EF恰好是正三角形且Q是A′F的中点,求证:EQ⊥平面A′FD
(2)当E、F分别是AB、BC的中点时,求二面角A′-EF-D的正弦值.
题型:不详难度:| 查看答案
已知直四棱柱ABCD-A′B′C′D′,四边形ABCD为正方形,AA′=2AB=2,E为棱CC′的中点.
(Ⅰ)求证:A′E⊥平面BDE;
(Ⅱ)设F为AD中点,G为棱BB′上一点,且BG=
1
4
BB′
,求证:FG平面BDE;
(Ⅲ)在(Ⅱ)的条件下求二面角G-DE-B的余弦值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.