如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.(1)求证:

如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.(1)求证:

题型:不详难度:来源:
如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且


AB


AD
=0,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判断点O、G、H是否共线,并说明理由.
答案
(1)证法一:由题意,原点O必定在圆M内,即点(0,0)代入方程x2+y2+Dx+Ey+F=0的左边后的值小于0,
于是有F<0,即证.…(4分)
证法二:由题意,不难发现A、C两点分别在x轴正负半轴上.设两点坐标分别为
A(a,0),C(c,0),则有ac<0.
对于圆方程x2+y2+Dx+Ey+F=0,当y=0时,可得x2+Dx+F=0,其中方程的两根分别为点A和点C的横坐标,于是有xAxC=ac=F.
因为ac<0,故F<0.…(4分)
(2)不难发现,对角线互相垂直的四边形ABCD面积S=
|AC|•|BD|
2
,因为S=8,|AC|=2,可得|BD|=8.…(6分)
又因为


AB


AD
=0
,所以∠A为直角,而因为四边形是圆M的内接四边形,故|BD|=2r=8⇒r=4.…(8分)
对于方程x2+y2+Dx+Ey+F=0所表示的圆,可知
D2
4
+
E2
4
-F=r2
,所以D2+E2-4F=4r2=64.…(10分)
(3)证:设四边形四个顶点的坐标分别为A(a,0),B(0,b),C(c,0),D(0,d).
则可得点G的坐标为(
c
2
d
2
)
,即


OG
=(
c
2
d
2
)
.…(12分)


AB
=(-A,B)
,且AB⊥OH,故要使G、O、H三点共线,只需证


AB


OG
=0
即可.


AB


OG
=
bd-ac
2
,且对于圆M的一般方程x2+y2+Dx+Ey+F=0,
当y=0时可得x2+Dx+F=0,其中方程的两根分别为点A和点C的横坐标,
于是有xAxC=ac=F.…(14分)
同理,当x=0时,可得y2+Ey+F=0,其中方程的两根分别为点B和点D的纵坐标,于是有yByD=bd=F.
所以,


AB


OG
=
bd-ac
2
=0
,即AB⊥OG.
故O、G、H必定三点共线.…(16分)
举一反三
已知则 ( )
A.B.C.D.

题型:单选题难度:简单| 查看答案
已知有限集.如果中元素满足,就称为“复活集”,给出下列结论:
①集合是“复活集”;
②若,且是“复活集”,则
③若,则不可能是“复活集”;
④若,则“复合集”有且只有一个,且
其中正确的结论是           .(填上你认为所有正确的结论序号).
题型:填空题难度:一般| 查看答案
已知集合.
(1)若= 3,求
(2)若,求实数的取值范围.
题型:填空题难度:一般| 查看答案
已知互异的复数a,b满足ab≠0,集合{a,b}={,},则=      .
题型:填空题难度:简单| 查看答案
若集合且下列四个关系:
;②;③;④有且只有一个是正确的,则符合条件的有序数组的个数是_________.
题型:填空题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.