(1)设M(x1,y1),N(x2,y2)(x1<1<x2),P(x0,y0) 由⇒10x2-18x+5=0, 所以x0==,y0==== 所以p(,)---------------------------(6分) (2)MN2=(x1-x2)2+(y1-y2)2=8-2x1x2-2y1y2, ⇒10x2-18tx+9t2-4=0, x1+x2=,x1=, y1y2=9(t-x1)(x2-t)=9[-t2+t(x1+x2)-x1x2]=-+, MN2=,MN=为定值.---------------------------------(4分) (3)设p(x0,y0),+=4,
| =k(k>1)⇒ | 4+m2+n2-2mx0-2ny0=k2[4+s2+p2-2sx0-2py0] |
| |
⇔ | 2m=k22s | 2n=k22p | 4+m2+n2=k2(4+s2+p2) |
| | 消去m,n得s2+p2=<4 所以s=p=1,k=,此时m=n=2,又A(2,2),B(1,1)在曲线C上 所以仅有A(2,2),B(1,1)符合.----------------------------------------(6分) |