已知椭圆的中心在原点,焦点在轴上,离心率为,它的一个顶点恰好是抛物线的焦点.(Ⅰ)求椭圆的方程;(Ⅱ)过点的直线与椭圆相切,直线与轴交于点,当为何值时的面积有最

已知椭圆的中心在原点,焦点在轴上,离心率为,它的一个顶点恰好是抛物线的焦点.(Ⅰ)求椭圆的方程;(Ⅱ)过点的直线与椭圆相切,直线与轴交于点,当为何值时的面积有最

题型:不详难度:来源:
已知椭圆的中心在原点,焦点在轴上,离心率为,它的一个顶点恰好是抛物线的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线与椭圆相切,直线轴交于点,当为何值时的面积有最小值?并求出最小值.
答案
(1)
(2)时,有最小值.
解析

试题分析:解:(Ⅰ)设方程为,抛物线的焦点为
.
双曲线的离心率  所以,得
∴椭圆C的方程为.                 4分
(Ⅱ)设直线的方程为,由对称性不妨设
得:    6分
依题意,得: 8分
,令,得,即
 10分(用表示一样给分)

当且仅当时取等号.                      12分
因为时,有最小值.           13分
点评:主要是考查了直线与椭圆的位置关系的运用,属于中档题。
举一反三
椭圆的左、右焦点分别为,若椭圆上恰好有6个不同的点,使得为等腰三角形,则椭圆的离心率的取值范围是(  )
A.B.C.D.

题型:不详难度:| 查看答案
如图,已知椭圆过点,离心率为,左、右焦点分别为.点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.设直线的斜率分别为

(i)证明:
(ii)问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线的焦点重合, 则此椭圆方程为
A.B.C.D.

题型:不详难度:| 查看答案
已知椭圆
(Ⅰ)设椭圆的半焦距,且成等差数列,求椭圆的方程;
(Ⅱ)设(1)中的椭圆与直线相交于两点,求的取值范围.
题型:不详难度:| 查看答案
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.