(本小题满分12分)如图,在直角坐标系中,已知椭圆:的离心率,左、右两个焦点分别为、。过右焦点且与轴垂直的直线与椭圆相交、两点,且. (1)求椭圆的方程;(2)

(本小题满分12分)如图,在直角坐标系中,已知椭圆:的离心率,左、右两个焦点分别为、。过右焦点且与轴垂直的直线与椭圆相交、两点,且. (1)求椭圆的方程;(2)

题型:不详难度:来源:
(本小题满分12分)
如图,在直角坐标系中,已知椭圆的离心率,左、右两个焦点分别为。过右焦点且与轴垂直的直线与椭圆相交两点,且
(1)求椭圆的方程;
(2)设椭圆的左顶点为,下顶点为,动点满足,试求点的轨迹方程,使点关于该轨迹的对称点落在椭圆上.
                                    
答案
 ,P的轨迹方程为
解析
(1)∵轴,∴,由椭圆的定义得:
,∴……………………2分
,∴,∵,∴

∴所求椭圆的方程为……………………5分
(2)由(1)知点,点,设点的坐标为


∴点的轨迹方程为……………………7分
设点B关于P的轨迹的对称点为,则由轴对称的性质可得,解得……………………9分
∵点在椭圆上,∴,整理得
,解得
∴点P的轨迹方程为,……………………11分
经检验都符合题设,
∴满足条件的点P的轨迹方程为……………………12分
举一反三
已知分别是椭圆的左、右焦点,上顶点为M。若在椭圆上存在一点P,分别连结PF1,PF2交y轴于A,B两点,且满足,则实数的取值范围为             
题型:不详难度:| 查看答案
已知椭圆的中心在坐标原点,焦点在x轴上,以其两个焦点和短轴的两个端点为顶点的
四边形是一个面积为4的正方形,设P为该椭圆上的动点,CD的坐标分别是,则PC·PD的最大值为  (     )
A   4        B       C    3     D   +2
题型:不详难度:| 查看答案
椭圆的左准线,左.右焦点分别为F1.F2,抛物线C2的准线为,焦点是F2,C1与C2的一个交点为P,则|PF2|的值等于                                                            (   )
A.B.C.4D.8

题型:不详难度:| 查看答案
已知焦点在轴上,中心在坐标原点的椭圆C的离心率为,且过点
(1)求椭圆C的方程;
(2)直线分别切椭圆C与圆(其中)于A.B两点,求|AB|的最大值。
题型:不详难度:| 查看答案
已知椭圆C:的焦点为,若点P在椭圆上,且满足 (其中为坐标原点),则称点P为“★点”,那么下列结论正确的是    (    )
A.椭圆上的所有点都是“★点”
B.椭圆上仅有有限个点是“★点”
C.椭圆上的所有点都不是“★点”
D.椭圆上有无穷多个点(但不是所有的点)是“★点”

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.