平面内动点到定点的距离比它到轴的距离大。(1)求动点的轨迹的方程;(2)过的直线与相交于两点,若,求弦的长。

平面内动点到定点的距离比它到轴的距离大。(1)求动点的轨迹的方程;(2)过的直线与相交于两点,若,求弦的长。

题型:不详难度:来源:
平面内动点到定点的距离比它到轴的距离大
(1)求动点的轨迹的方程;
(2)过的直线相交于两点,若,求弦的长。
答案
(1)(2)8
解析

试题分析:(1)由题意,动点到定点的距等于它到x=-1的距离,由抛物线的定义知,p=2,所以所求的轨迹方程为
(2)直线联立,消去,整理可得:
,则
点评:解这道有关焦半径、焦点弦问题时,①借用到抛物线焦点弦的一个重要结论: ,②从整体上把握题设和目标的联系,这样可避开求解单个元素的麻烦.
举一反三
己知抛物线方程为),焦点为是坐标原点,是抛物线上的一点,轴正方向的夹角为60°,若的面积为,则的值为(    )
A.2B.C.2或D.2或

题型:不详难度:| 查看答案
设A、B是抛物线上的两个动点,且则AB的中点M到轴的距离的最小值为             
题型:不详难度:| 查看答案
给定直线动圆M与定圆外切且与直线相切.
(1)求动圆圆心M的轨迹C的方程;
(2)设A、B是曲线C上两动点(异于坐标原点O),若求证直线AB过一定点,并求出定点的坐标.
题型:不详难度:| 查看答案
已知抛物线()上一点到其准线的距离为.

(Ⅰ)求的值;
(Ⅱ)设抛物线上动点的横坐标为),过点的直线交于另一点,交轴于点(直线的斜率记作).过点的垂线交于另一点.若恰好是的切线,问是否为定值?若是,求出该定值;若不是,说明理由.
题型:不详难度:| 查看答案
已知点P是抛物线上一点,设P到此抛物线准线的距离是d1,到直线的距离是d2,则dl+d2的最小值是(     )
A.B.C.D.3

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.