已知抛物线C:y=4x,F是C的焦点,过焦点F的直线l与C交于 A,B两点,O为坐标原点。(1)求·的值;(2)设=,求△ABO的面积S的最小值;(3)在(2)

已知抛物线C:y=4x,F是C的焦点,过焦点F的直线l与C交于 A,B两点,O为坐标原点。(1)求·的值;(2)设=,求△ABO的面积S的最小值;(3)在(2)

题型:不详难度:来源:
已知抛物线C:y=4x,F是C的焦点,过焦点F的直线l与C交于 A,B两点,O为坐标原点。
(1)求·的值;(2)设=,求△ABO的面积S的最小值;
(3)在(2)的条件下若S≤,求的取值范围。
答案
(1)-3(2)2(3)
解析
本试题主要是考查了直线与抛物线的位置关系的运用。以及向量的共线得到坐标关系,进而化简求解参数的范围。
(1)因为根据抛物线的方程可得焦点F(1,0),设直线l的方程为x=my+1,将其与C的方程联立,消去x可得y2-4my-4=0,集合韦达定理和向量的数量积为零得到求解。
(2)因为给定的向量关系式中,利用坐标相等得到关于参数的表达式,进而结合不等式的思想得到最值。
(3)由上一问可知,参数的范围。
解:⑴根据抛物线的方程可得焦点F(1,0),设直线l的方程为x=my+1,将其与C的方程联立,消去x可得-4my-4=0.
设A、B点的坐标分别为(),()(﹥0﹥),则=-4.
因为=4=4,所以==1,
·=+=-3   ………………………………………………4分
(2)因为=,所以(1-,-)=-1,)即  1-=-
-=
=4③ =4④ ,由②③④消去后,得到=,将其代入①,注意到﹥0,解得=
从而可得=-=2,故△OAB的面积S=·=
因为≧2恒成立,故△OAB的面积S的最小值是2………(8分).(3)由 解之的   ………………………………………………12分
举一反三
以抛物线y2=8x上的任意一点为圆心作圆与直线x+2=0相切,这些圆必过一定点,则这一定点的坐标是(  )
A.(0,2)B.(2,0)C.(4,0)D.(0,4)

题型:不详难度:| 查看答案
已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为(  )
A.B.C.D.1

题型:不详难度:| 查看答案
已知点A(3,4),F是抛物线y2=8x的焦点,M是抛物线上的动点,当|AM|+|MF|最小时,M点坐标是(  )
A.(0,0)B.(3,2)C.(2,4)D.(3,-2)

题型:不详难度:| 查看答案
设抛物线y2=2px(p>0)的焦点为F,点A在y轴上,若线段FA的中点B在抛物线上,且点B到抛物线准线的距离为,则点A的坐标为(  )
A.(0,±2)B.(0,2)
C.(0,±4)D.(0,4)

题型:不详难度:| 查看答案
对于抛物线y2=4x上任意一点Q,点P(a,0)满足|PQ|≥|a|,则a的取值范围是(  )
A.(-∞,0)B.(-∞,2]C.[0,2]D.(0,2)

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.