甲、乙两位同学做摸球游戏.游戏规则规定:两人轮流从一个放有2个红球,3个黄球,1个白球的6个小球(只有颜色不同)的暗箱中取球,每次每人只取一球,每取出一个后立即

甲、乙两位同学做摸球游戏.游戏规则规定:两人轮流从一个放有2个红球,3个黄球,1个白球的6个小球(只有颜色不同)的暗箱中取球,每次每人只取一球,每取出一个后立即

题型:不详难度:来源:
甲、乙两位同学做摸球游戏.游戏规则规定:两人轮流从一个放有2个红球,3个黄球,1个白球的6个小球(只有颜色不同)的暗箱中取球,每次每人只取一球,每取出一个后立即放回,另一人接着取,取出后也立即放回,谁先取到红球,谁为胜者,现甲先取.
(Ⅰ)求甲取球次数不超过二次就获胜的概率.
(Ⅱ)若直到甲第n次取出球时,恰好分出胜负的概率等于
64
2187
,求甲的取球次数.
答案
解(Ⅰ)设“甲取球次数不超过二次就获胜”为事件A,
根据题意,两人每次抽到红球的概率都为
2
6
=
1
3
,则抽不到红球的概率为1-
1
3
=
2
3

则A有两种情况:①甲第一次取球就得红球,其概率P1=
1
3

②甲第二次取球得红球,其概率P2=
2
3
×
2
3
×
1
3
=
4
27

则P(A)=P1+P2=
1
3
+
4
27
=
13
27

甲取球次数不超过二次就获胜的概率
13
27

(Ⅱ)由题意可得:若直到甲第n次取出球时,恰好分出胜负,
则甲在前n-1抽取中,抽到的都不是红球,同时乙也抽了n-1次,也没有抽到红球,
则有(
2
3
)n-1•(
2
3
)n-1
1
3
=
64
2187

解得n=4
故甲取球次数为4次.
举一反三
A有一只放有x个红球,y个白球,z个黄球的箱子,且x+y+z=6(x,y,z∈N),B有一只放有3个红球,2个白球,1个黄球的箱子,两人各自从自己的箱子中任取一球,规定:当两球同色时A胜,异色时B胜;
(1)用x,y,z表示A胜的概率;
(2)若又规定当A取红、白、黄球而胜的得分分别为1、2、3分,否则得0分,求A得分的期望最大值及此时x,y,z的值.
题型:不详难度:| 查看答案
甲乙二人各进行一次射击,如果二人击中目标的概率都是0.6,则至少有一人击中目标的概率为(  )
A.0.16B.0.36C.0.48D.0.84
题型:不详难度:| 查看答案
甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为80%,则乙不输的概率为______.
题型:不详难度:| 查看答案
从一批产品中取出三件产品,设A为“三件产品全不是次品”,B为“三件产品全是次品”,C为“三件产品至少有一件是次品”,则下列结论正确的是(  )
A.B与C互斥B.A与C互斥
C.任何两个均互斥D.任何两个均不互斥
题型:不详难度:| 查看答案
现有6名奥运会志愿者,其中志愿者A1,A2通晓日语,B1,B2通晓俄语,C1,C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求A1被选中的概率;
(Ⅱ)求B1和C1不全被选中的概率.
(Ⅲ)若6名奥运会志愿者每小时派俩人值班,现有俩名只会日语的运动员到来,求恰好遇到A1,A2的概率.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.