设有关于x的一元二次方程x2+2ax+b2=0.(1)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a
题型:不详难度:来源:
设有关于x的一元二次方程x2+2ax+b2=0. (1)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a,第二次出现的点数为b.求上述方程有实根的概率; (2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率. |
答案
记事件A=“方程x2+2ax+b2=0有实根”. 由△=(2a)2-4b2≥0,得:a2≥b2 所以,当a≥0,b≥0时,方程x2+2ax+b2=0有实根⇔a≥b(2分) (1)基本事件共6×6=36个, 其中事件A包含21个基本事件: (1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1), (4,2),(4,3),(4,4)(5,1),(5,2),(5,3),(5,4), (5,5),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6) 所以P(A)==(6分) (2)全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}, 其面积为S=3×2=6. 又构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}, 其面积为S′=3×2-×22=4, 所以 P(A)==(10分) |
举一反三
在6瓶饮料中,有2瓶已过了保质期.从这6瓶饮料中任取2瓶,则至少取到一瓶已过保质期饮料概率为( ) |
口袋中装有大小、材质都相同的6个小球,其中有3个红球、2个黄球和1个白球,从中随机摸出1个球,那么摸到红球或白球的概率是( ) |
从数字1、2、3、4、5中任取3个,组成没有重复数字的三位数,则: (1)这个三位数是5的倍数的概率是 ______. (2)这个三位数大于400的概率是 ______. |
一个家庭中有两个小孩,这两个小孩都是女孩的概率为( ) |
2013年植树节来临之际,郑州一中和郑州外国语中学联合开展一项去郊外林区义务劳动的公益活动,活动包括三项:植树、浇水、除草,现有甲、乙、丙三名同学各自随机参加其中的一项活动,则他们恰好共同参加同一个活动的概率为______. |
最新试题
热门考点