小明家的晚报在下午5:30~6:30之间的任何一个时间随机地被送到,小明一家人在下午6:00~7:00之间的任何一个时间随机地开始晚餐.试计算:事件“晚报在晚餐
题型:不详难度:来源:
小明家的晚报在下午5:30~6:30之间的任何一个时间随机地被送到,小明一家人在下午6:00~7:00之间的任何一个时间随机地开始晚餐.试计算:事件“晚报在晚餐之前被送到”的概率. |
答案
显然:事件“晚报在晚餐之前被送到”的概率是属于“几何概型”. 设晚报被送到的时间为下午x时,小明家晚餐开始的时间为下午y时, 则:, 又事件“晚报在晚餐之前被送到”即为:x<y 设事件A表示:“晚报在晚餐之前被送到”,如图. 则:P(A)==. 答:事件“晚报在晚餐之前被送到”的概率为.
|
举一反三
如图,矩形长为5,宽为3,在矩形内随机撒100颗黄豆,数得落在椭圆内的黄豆数为80颗,以此实验数据为依据可以估算椭圆的面积约为( )
|
设点A为半径是1的圆O上一定点,在圆周上等可能地任取一点B. (1)求弦AB的长超过圆内接正三角形边长的概率; (2)求弦AB的长超过圆半径的概率.
|
已知实数x、y可以在0<x<2,0<y<2的条件下随机取数,那么取出的数对(x,y)满足(x-1)2+(y-1)2<1的概率是( ) |
已知关于x的一次函数y=mx+n. (1)设集合P={-2,-1,1,2,3}和Q={-2,3},分别从集合P和Q中随机取一个数作为m和n,求函数y=mx+n是增函数的概率; (2)实数m,n满足条件求函数y=mx+n的图象经过一、二、三象限的概率. |
任取k∈[-3,3],则k的值使得过A(1,1)可以作两条直线与圆x2+y2+kx-2y-1.25k=0相切的概率为( ) |
最新试题
热门考点