某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有

某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有

题型:不详难度:来源:
某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:
方案1:运走设备,此时需花费4000元;
方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56 000元;
方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.
(1)试求方案3中损失费ξ(随机变量)的分布列;
(2)试比较哪一种方案好.
答案
(1)在方案3中,记“甲河流发生洪水”为事件A,“乙河流发生洪水”为事件B,
则P(A)=0.25,P(B)=0.18,
所以,有且只有一条河流发生洪水的概率为P(A?
.
B
+
.
A
?B)=P(A)?P(
.
B
)+P(
.
A
)?P(B)=0.34,
两河流同时发生洪水的概率为P(A?B)=0.045,
都不发生洪水的概率为P(
.
A
?
.
B
)=0.75×0.82=0.615,
设损失费为随机变量ξ,则ξ的分布列为:

魔方格


(2)对方案1来说,花费4000元;
对方案2来说,建围墙需花费1000元,它只能抵御一条河流的洪水,
但当两河流都发生洪水时,损失约56000元,而两河流同时发生洪水的概率为P=0.25×0.18=0.045.
所以,该方案中可能的花费为:1000+56000×0.045=3520(元).
对于方案来说,损失费的数学期望为:Eξ=10000×0.34+60000×0.045=6100(元),
比较可知,方案2最好,方案1次之,方案3最差.
举一反三
若随机变量X的概率分布如下表,则表中a的值为(  )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
X1234
P0.20.30.3a
某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意的连续取出2件,写出其中次品数ξ的概率分布.
盒子中有大小相同的球6个,其中标号为1的球2个,标号为2的球3个.标号为3的球1个,第一次从盒子中任取1个球,放回后第二次再任取1个球 (假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.
(1)求随机变量ξ的分布列:
(2)求随机变量ξ的期望Eξ.
有A,B,C,D四个城市,它们都有一个著名的旅游点依此记为a,b,c,d把A,B,C,D和a,b,c,d分别写成左、右两列,现在一名旅游爱好者随机用4条线把左右全部连接起来,构成“一一对应”,已知连对的得2分,连错的得0分;
(1)求该爱好者得分的分布列;
(2)求所得分的数学期望?
设随机变量ξ的分布列P(ξ=i)=,i=1,2则P(ξ=2)为(  )
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.B.C.D.