(本小题满分13分)一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5的5个红球与编号为1,2,3,4的4个白球,从中任意取出3个球.(Ⅰ)求取出的3
题型:不详难度:来源:
(本小题满分13分) 一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5的5个红球与编号为1,2,3,4的4个白球,从中任意取出3个球. (Ⅰ)求取出的3个球颜色相同且编号是三个连续整数的概率; (Ⅱ)求取出的3个球中恰有2个球编号相同的概率; (Ⅲ)记X为取出的3个球中编号的最大值,求X的分布列与数学期望. |
答案
解析
第一问中利用古典概型概率公式可知,所有的基本事件数为,那么取出的3个球颜色相同且编号是三个连续整数的基本事件数为5,可知概率值为5/84 第二问中,因为取出的3个球中恰有2个球编号相同的情况共有,同上结合古典概型概率公式得到概率值 第三问中,首先求解随机变量的取值,然后分别求解概率值,得到分布列和期望值。 解:(Ⅰ)设“取出的3个球颜色相同且编号是三个连续整数”为事件A,则 . 答:取出的3个球的编号恰好是3个连续的整数,且颜色相同的概率为.…4分 (Ⅱ)设“取出的3个球中恰有两个球编号相同”为事件B,则 . 答:取出的3个球中恰有两个球编号相同的概率为. ……8分 (Ⅲ)X的取值为2,3,4,5. , , , . ……11分 所以X的分布列为
X的数学期望. ……13分 |
举一反三
某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:
从第一个顾客开始办理业务时计时。 (1)估计第三个顾客恰好等待4分钟开始办理业务的概率; (2)表示至第2分钟末已办理完业务的顾客人数,求的分布列及数学期望 |
(本题满分10分) (理)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(Ⅰ)求红队至少两名队员获胜的概率; (Ⅱ)用表示红队队员获胜的总盘数,求的分布列和数学期望. |
(本小题满分10分) 某电子科技公司遇到一个技术性难题,决定成立甲、乙两个攻关小组,按要求各自独立进行为期一个月的技术攻关,同时决定对攻关限期内攻克技术难题的小组给予奖励. 已知此技术难题在攻关期限内被甲小组攻克的概率为,被乙小组攻克的概率为, (1)设为攻关期满时获奖的攻关小组数,求的分布列及数学期望; (2)设为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数在定义域内单调递增”为事件C,求事件C发生的概率; |
如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前进两步(如由A到C),当正方体上底面出现的数字是3,质点P前进三步(如由A到D).在质点P转一圈之前连续投掷,若超过一圈,则投掷终止. (1)求质点P恰好返回到A点的概率; (2)在质点P转一圈恰能返回到A点的所有结果中,用随机变量ξ表示点P恰能返回到A点的投掷次数,求ξ的数学期望. |
甲、乙、丙三人分别独立地解一道题,甲做对的概率是,三人都做对的概率是,三人全做错的概率是,已知乙做对这道题的概率大于丙做对这道题的概率.设三人中做对这道题的人数为,则随机变量的数学期望 . |
最新试题
热门考点