欲修建一横断面为等腰梯形(如图1)的水渠,为降低成本必须尽量减少水与渠壁的接触面,若水渠横断面面积设计为定值S,渠深h,则水渠壁的倾角α(0°<α<

欲修建一横断面为等腰梯形(如图1)的水渠,为降低成本必须尽量减少水与渠壁的接触面,若水渠横断面面积设计为定值S,渠深h,则水渠壁的倾角α(0°<α<

题型:不详难度:来源:
欲修建一横断面为等腰梯形(如图1)的水渠,为降低成本必须尽量减少水与渠壁的接触面,若水渠横断面面积设计为定值S,渠深h,则水渠壁的倾角α(0°<α<90°)应为多大时,方能使修建成本最低?
答案
当α=60°时,修建成本最低.
解析

试题分析:作BEDCE(图略),在Rt△BEC中,BC=,CE=hcotα,又AB-CD=2CE=2hcotα,AB+CD=,故CD=-hcotα.
y=AD+DC+BC,则y= (0°<α<90°),由于Sh是常量,欲使y最小,只需u=取最小值,u可看作(0,2)与(-sinα,cosα)两点连线的斜率,由于α∈(0°,90°),点(-sinα,cosα)在曲线x2+y2=1(-1<x<0,0<y<1)上运动,当过(0,2)的直线与曲线相切时,直线斜率最小,此时切点为(-),则有sinα=,且cosα=,那么α=60°,故当α=60°时,修建成本最低.
点评:解决的关键是根据三角函数的定义表示边长和长度,以及修建的成本,属于中档题。
举一反三
已知函数为常数,是自然对数的底数)是实数集上的奇函数.
(1)求的值;
(2)试讨论函数的零点的个数.
题型:不详难度:| 查看答案
)设为奇函数,为常数.
(1)求的值;
(2)判断在区间(1,+∞)内的单调性,并证明你的判断正确;
(3)若对于区间 [3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.
题型:不详难度:| 查看答案
海安县城有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.
(1)设在甲家租一张球台开展活动小时的收费为,在乙家租一张球台开展活动小时的收费为.试求
(2)问:小张选择哪家比较合算?为什么?
题型:不详难度:| 查看答案
定义在[-1,1]上的奇函数满足,且当时,有
(1)试问函数f(x)的图象上是否存在两个不同的点AB,使直线AB恰好与y轴垂直,若存在,求出AB两点的坐标;若不存在,请说明理由并加以证明.
(2)若对所有恒成立,
求实数m的取值范围.
题型:不详难度:| 查看答案
已知函数
(1)证明:对于一切的实数x都有f(x)x;
(2)若函数存在两个零点,求a的取值范围
(3)证明:
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.