已知函数,,(1)若函数的两个极值点为,求函数的解析式;(2)在(1)的条件下,求函数的图象过点的切线方程;(3)对一切恒成立,求实数的取值范围。

已知函数,,(1)若函数的两个极值点为,求函数的解析式;(2)在(1)的条件下,求函数的图象过点的切线方程;(3)对一切恒成立,求实数的取值范围。

题型:不详难度:来源:
已知函数
(1)若函数的两个极值点为,求函数的解析式;
(2)在(1)的条件下,求函数的图象过点的切线方程;
(3)对一切恒成立,求实数的取值范围。
答案
(1) (2)x+y-2=0  (3)  a≥-2
解析
函数的两个极值点处导数为0 ,g’(x)=3x2+2ax-1带入即可;
要求函数的图象过点的切线方程,先求函数在点处的导数即斜率,在用点斜式求出方程;恒成立求实数的取值范围时,一般分离参数,2a≥2lnx-3x-再在最值处成立即可。
解:(1)g’(x)=3x2+2ax-1由题意:
(2)由(1)可得:g(x)=x3-x2-x+2(1o)若P为切点,则切线方程为:y=1
2 o若P不是切点,设切点Q(x0,y0)∴切线方程为y-y0=(3x02-2x0-1)(x-x0)
1-(x03-x02-x0+2)=(3x02-2x0-1)(1-x0)    2x0(x0-1)2=0    ∴x0=0   ∴切点(0,2)
∴切线方程:x+y-2=0
(3)2xlnx≤3x2+2ax-1+2    ∴2ax≥2xlnx-3x2-1     ∵x>0   ∴2a≥2lnx-3x-
令ln(x)=2lnx-3x-   
x      (0,1)    1      (1,+∞)
h’(x)      +       0       -
h(x)        ↑     极大值      ↓
∴h(x) ≤h(1)=-4    ∴2a≥-4    a≥-2
举一反三
(本题满分12分)
我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的。某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:
①若每月用水量不超过最低限量立方米时,只付基本费9元和每户每月定额损耗费元;
②若每月用水量超过立方米时,除了付基本费9元和定额损耗费外,超过部分每立方米付元的超额费;
③每户每月定额损耗费不超过5元。
(1)  求每户每月水费(元)与月用水量(立方米)的函数关系式;
(2)  该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:
月份
用水量(立方米)
水费(元)

4
17

5
23

2.5
11
试分析该家庭今年一、二、三各月份的用水量是否超过最低限量,并求的值。
题型:不详难度:| 查看答案
(本题满分12分)有甲、乙两种商品,经销这两种商品所能获得的利润分别是万元和万元,它们与投入资金万元的关系为:今有3万元资金投入经营这两种商品,为获得最大利润,对这两种商品的资金分别投入多少时,能获得最大利润?最大利润是多少?
题型:不详难度:| 查看答案
(本题满分12分)已知函数
(1)求的值;
(2)由(1)中求得的结果,你能发现有什么关系?证明你的发现;
(3)求的值.
题型:不详难度:| 查看答案
已知函数,若,则           
题型:不详难度:| 查看答案
已知函数  
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.