已知a>0,1b-1a>1,求证:1+a>11-b.

已知a>0,1b-1a>1,求证:1+a>11-b.

题型:不详难度:来源:
已知a>0,
1
b
-
1
a
>1,求证:


1+a
1


1-b
答案
证明:证法一:由已知
1
b
-
1
a
>1及a>0,可知b>0,
要证


1+a
1


1-b

可证


1+a


1-b
>1,
即证1+a-b-ab>1,这只需证a-b-ab>0,即
a-b
ab
>1,即
1
b
-
1
a
>1,
而这正是已知条件,以上各步均可逆推,所以原不等式得证.
证法二:
1
b
-
1
a
>1及a>0,可知1>b>0,
1
b
-
1
a
>1,
∴a-b-ab>0,1+a-b-ab>1,(1+a)(1-b)>1.
由a>0,1-b>0,得


1+a


1-b
>1,


1+a
1


1-b
举一反三
选修4-5:不等式选讲
(Ⅰ)已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(Ⅱ)已知a,b,c都是正实数,求证:a3+b3+c3
1
3
(a2+b2+c2)(a+b+c)
题型:不详难度:| 查看答案
|AB|=|xA-xB|表示数轴上A,B两点的距离,它也可以看作满足一定条件的一种运算.这样,可以将满足下列三个条件的一个x与y间的运算p(x,y)叫做x,y之间的距离:条件一,非负性p(x,y)≥0,等号成立当且仅当x=y;条件二,交换律p(x,y)=p(y,x);条件三,三角不等式p(x,z)≤p(x,y)+p(y,z).
试确定运算s(x,y)=
|x-y|
1+|x-y|
是否为一个距离?是,证明;不是,举出反例.
题型:不详难度:| 查看答案
求证:(1)n≥0,试用分析法证明,


n+2
-


n+1


n+1
-


n

(2)当a、b、c为正数时,(a+b+c)(
1
a
+
1
b
+
1
c
)≥9.
相等的非零实数.用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.
题型:不详难度:| 查看答案
求证:


6
-


5
>2


2
-


7
题型:不详难度:| 查看答案
(1)若a≥1,用分析法证明


a+1
+


a-1
<2


a

(2)已知a,b都是正实数,且ab=2,求证:(2a+1)(b+1)≥9.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.