利用数学归纳法证明“1+a+a2+…+an+1=,(a ≠1,nN)”时,在验证n=1成立时,左边应该是(  )A.1B.1+aC.1+a+a2D.1+a+a2

利用数学归纳法证明“1+a+a2+…+an+1=,(a ≠1,nN)”时,在验证n=1成立时,左边应该是(  )A.1B.1+aC.1+a+a2D.1+a+a2

题型:不详难度:来源:
利用数学归纳法证明“1+a+a2+…+an+1=,(a ≠1,nN)”时,在验证n=1成立时,左边应该是(  )
A.1B.1+aC.1+a+a2D.1+a+a2+a3

答案
C
解析

分析:首先分析题目已知用数学归纳法证明:“1+a+a2+…+an+1= (a≠1)”在验证n=1时,左端计算所得的项.把n=1代入等式左边即可得到答案.
解:用数学归纳法证明:“1+a+a2+…+an+1=(a≠1)”
在验证n=1时,把当n=1代入,左端=1+a+a2
故选C.
举一反三
已知n为正偶数,用数学归纳法证明(  )
1时,若已假设n=k(k≥2为偶数)时命题为真,则还需要用归纳假设再证(  )
A.n=k+1时等式成立B.n=k+2时等式成立
C.n=2k+2时等式成立D.n=2(k+2)时等式成立

题型:不详难度:| 查看答案
(12分)设f(n)=1+,当n≥2,nN*时,用数学归纳法证明:n+f(1)+f(2)+…+f(n-1)=nf(n)。
题型:不详难度:| 查看答案
用数学归纳法证明不等式的过程中,
递推到时的不等式左边(   ).
A.增加了B.增加了
C.增加了“”,又减少了“
D.增加了,减少了“

题型:不详难度:| 查看答案
已知正数数列中,前项和为,且
用数学归纳法证明:
题型:不详难度:| 查看答案
(本小题满分12分)用数学归纳法证明:
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.