【题文】已知函数,函数的最小值为.求;是否存在实数m,n同时满足下列条件:①②当的定义域为时,值域为?若存在,求出m,n的值;若不存在,说明理由.

【题文】已知函数,函数的最小值为.求;是否存在实数m,n同时满足下列条件:①②当的定义域为时,值域为?若存在,求出m,n的值;若不存在,说明理由.

题型:难度:来源:
【题文】已知函数,函数的最小值为.

是否存在实数m,n同时满足下列条件:

②当的定义域为时,值域为?若存在,求出m,n的值;若不存在,说明理由.
答案
【答案】(1) ;(2)满足题意的m,n不存在.
解析
【解析】
试题分析:(1)利用换元法设,则,从而可化为对称轴为,对讨论可得最小值.(2)假设满足题意的m,n存在,由①上是减函数,故
,两式相减得6(m-n)=(m-n)(m+n)即m+n=6,这与矛盾,故满足题意的m,n不存在.
试题解析: 解:(1)因为,所以
,则
时,
时,
时,

(2)假设满足题意的m,n存在, 因为上是减函数。
因为的定义域为[n,m],值域为[n2 ,m2],
,相减得6(m-n)=(m-n)(m+n)
所以m+n=6但这与矛盾
所以满足题意的m,n不存在。
考点:二次函数与指数函数的综合应用
举一反三
【题文】已知函数定义域是,则的定义域是(    )
A.B.C.D.
题型:难度:| 查看答案
【题文】已知,则的定义域为           .
题型:难度:| 查看答案
【题文】(本题满分12分)已知函数
(Ⅰ)求的定义域和值域;
(Ⅱ)判断函数在区间(2,5)上的单调性,并用定义来证明所得结论.
题型:难度:| 查看答案
【题文】函数y=f(x)的图象如图所示,观察图象可知函数y=f(x)的定义域、值域分别是(  )
A.[-5, 0]∪[2, 6], [0, 5]
B.[-5, 6], [ 0, +∞)
C.[-5, 0]∪[2, 6), [0, +∞)
D.[-5, +∞), [ 2, 5 ]
题型:难度:| 查看答案
【题文】的定义域为               .
题型:难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.