【题文】已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义域内的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x

【题文】已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义域内的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x

题型:难度:来源:
【题文】已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义域内的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0.
(1)求证:f(x)是偶函数;
(2)求证:f(x)在(0,+∞)上是增函数.
答案
【答案】(1)见解析    (2)见解析
解析
【解析】证明: (1)因对定义域内的任意x1、x2都有
f(x1·x2)=f(x1)+f(x2),
令x1=x,x2=-1,
则有f(-x)=f(x)+f(-1).
又令x1=x2=-1,得2f(-1)=f(1).
再令x1=x2=1,得f(1)=0,
从而f(-1)=0,
于是有f(-x)=f(x),所以f(x)是偶函数.
(2)设0<x1<x2
则f(x1)-f(x2)=f(x1)-f(x1·)=f(x1)-[f(x1)+f()]=-f(),
由于0<x1<x2,所以>1,从而f()>0,
故f(x1)-f(x2)<0,即f(x1)<f(x2),
所以f(x)在(0,+∞)上是增函数.
举一反三
【题文】若函数f(x)、g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=ex,则有(  )
A.f(2)<f(3)<g(0)B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)D.g(0)<f(2)<f(3)
题型:难度:| 查看答案
【题文】若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则f(x-1)<0的解集是(  )
A.(-1,0)B.(-∞,0)∪(1,2)
C.(1,2)D.(0,2)
题型:难度:| 查看答案
【题文】定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)时,f(x)=2x,则f(log220)的值为(  )
A.1B.C.-1D.-
题型:难度:| 查看答案
【题文】已知定义域为R的函数f(x)为奇函数,且满足f(x+2)=-f(x),当x∈[0,1]时,f(x)=2x-1.
(1)求f(x)在[-1,0)上的解析式;
(2)求f(24)的值.
题型:难度:| 查看答案
【题文】已知函数,则的大小关系是(   )
A.
B.
C.
D.
题型:难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.