【题文】 (本小题满分13分)已知函数f (x)=ln x-a2x2+ax (a∈).(1)当a=1时,求函数f (x)的单调区间;(2)若函数f (x)在区间

【题文】 (本小题满分13分)已知函数f (x)=ln x-a2x2+ax (a∈).(1)当a=1时,求函数f (x)的单调区间;(2)若函数f (x)在区间

题型:难度:来源:
【题文】 (本小题满分13分)已知函数f (x)=ln x-a2x2+ax (a∈).
(1)当a=1时,求函数f (x)的单调区间;
(2)若函数f (x)在区间 (1,+∞)上是减函数,求实数a的取值范围.
答案
【答案】(1)函数的单调递增区间是,单调递减区间是;
(2)实数a的取值范围是
解析
【解析】
试题分析:(1)当时,,定义域是.首先求得:,再利用导数的符号判断函数 的单调性并求单调区间;
(2)首先求出函数的导数,因为函数f (x)在区间 (1,+∞)上是减函数,所以所以上恒成立;转化为二次函数、二次方程与二次不等式问题.
试题解析:解:(Ⅰ)当时,,定义域是

,解得;由,解得
所以函数的单调递增区间是,单调递减区间是.        5分
(2)(法一)
因为函数在区间上是减函数,所以上恒成立,
,即上恒成立.       7分
时,,所以不成立.                          9分
时,,对称轴
,即,解得
所以实数a的取值范围是.                                13分
(法二),定义域是
①当时,在区间上是增函数,所以不成立.       8分
时,
,即,则,                 9分
(1)当时,由,解得
所以函数的单调递减区间是
因为函数在区间上是减函数,+所以,解得.         11分
(2)当时,由,解得
所以函数的单调递减区间是
因为函数在区间上是减函数,所以,解得
综上实数a的取值范围是.                             13分
考点:1、导数在研究函数性质中的应用;2、二次函数、二次方程与一元二次不等式综合问题;3、等价转化的思想与数形结合的思想.
举一反三
【题文】 在下列函数①中,满足“对任意的,则恒成立”的函数是________.(填上所有正确的序号)
题型:难度:| 查看答案
【题文】 在下列函数①中,满足“对任意的,则恒成立”的函数是________.(填上所有正确的序号)
题型:难度:| 查看答案
【题文】当时,,则的取值范围是( )
A.B.C.D.
题型:难度:| 查看答案
【题文】当时,,则的取值范围是( )
A.B.C.D.
题型:难度:| 查看答案
【题文】函数的定义域为_____     __.
题型:难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.