如图所示,BCPC′D是螺旋轨道,半径为R的圆O与半径为2R的BCD圆弧相切于最低点C,与水平面夹角都是37°的倾斜轨道AB、ED分别与BC、C′D圆弧相切于B、D点(C、C′均为竖直圆的最底点),将一劲度系数为k的轻质弹簧的一端固定在AB轨道的有孔固定板上,平行于斜面的细线穿过有孔固定板和弹簧跨过定滑轮将小球和大球连接,小球与弹簧接触但不相连,小球质量为m,大球质量为m,ED轨道上固定一同样轻质弹簧,弹簧下端与D点距离为L2,初始两球静止,小球与B点的距离是L1,L1>L2,现小球与细线突然断开.一切摩擦不计,重力加速度为g. (1)细线刚断时,小球的加速度大小; (2)小球恰好能完成竖直圆周运动这种情况下,小球过C点前后瞬间有压力突变,求压力改变量为多少? (3)小球冲上左侧轨道获得与初始线断相同的加速度时,小球的速度.
|