已知曲线与椭圆x2/27+y2/36=1有相同的焦点且与椭圆的一个焦点的纵坐标为4,求双曲线的方程
题目
已知曲线与椭圆x2/27+y2/36=1有相同的焦点且与椭圆的一个焦点的纵坐标为4,求双曲线的方程
答案
a^2=36,b^2=27,c^2=9
椭圆的焦点是F(0,3)或者(0,-3)
设双曲线为y^2/k-x^2/(9-k)=1(0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点