与椭圆x²/16+y²/25=1共焦点,且过点(-2,√10)求双曲线的标准方程.

与椭圆x²/16+y²/25=1共焦点,且过点(-2,√10)求双曲线的标准方程.

题目
与椭圆x²/16+y²/25=1共焦点,且过点(-2,√10)求双曲线的标准方程.
答案
椭圆 x^2/16+y^2/25=1 中,a^2=25,b^2=16,因此 c^2=a^2-b^2=9 ,
所以 c=3 ,焦点为 F1(0,-3)、F2(0,3),
由于 P(-2,√10)在双曲线上,
所以由定义得,双曲线中 2a=|PF1-PF2|=| √[(-2-0)^2+(√10+3)^2]-√[(-2-0)^2+(√10-3)^2] |
=2√5 ,
则 a=√5 ,又 c=3 ,因此 a^2=5,b^2=c^2-a^2=4 ,
所以,所求双曲线方程为 y^2/5-x^2/4=1 .
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.