已知函数f(x)=ax³+bx²+cx(a≠0,x∈R)为奇函数,且f(x)在x=1处取得极大值2
题目
已知函数f(x)=ax³+bx²+cx(a≠0,x∈R)为奇函数,且f(x)在x=1处取得极大值2
(1)求y=f(x)的解析式
(2)记g(x)=f(x)/x+(k+1)lnx,求函数y=g(x)的的单调区间.
(3)在(2)的条件下,当k=2时,若函数y=g(x)的图像的直线y=x+m的下方,求m的取值范围
答案
(1)f(x)=ax³+bx²+cx(a≠0,x∈R)为奇函数,
∴b=0,f'(x)=3ax^2+c
f(x)在x=1处取得极大值2,
∴f(1)=a+c=2,
f'(1)=3a+c=0,
解得a=-1,c=3,f(x)=-x^3+3x.
(2)g(x)=-x^2+3+(k+1)lnx,x>0.
g'(x)=-2x+(k+1)/x=(k+1-2x^2)/x,
k0,g(x)↑;x>√[(k+1)/2]时g'(x)0),
h'(x)=-2x-1+3/x=-2(x-1)(x+3/2)/x,
0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 数列极限已知数列xn=1+xn-1/(1+xn-1),x1=1,求该数列极限
- 在3.86米长的墙上挂0.48米的正方形画,要求每两幅画之间、画与墙边之间都保持相等的间隔……
- 已知单项式3x²y的2n-1次方与-1/2x²y的n+2次方的和仍然是一个单项式,则n的值是
- 描写自然现象、风、云、雷、电的一个片段.
- Did not bring you happiness翻译中文?
- 成本价是70元,售价是100元,利润率怎么算?用100-70=30元30/?是利润,30/100是什么?
- f(x)=x2-3x,则f(2x-1) =______,f[f(x)]=_____
- Do you know what they should do?怎么回答?
- 十个哥哥力量大,一切困难都不怕.猜一字?
- 英文翻译 他和他的妈妈正在讨论去度假的问题